课程大纲
网络空间安全是一级学科。信息安全是一门新兴的交叉学科,涉及通信学科、计算机学科、数学、物理、生物、法律和管理学科等多个学科,其核心技术是密码技术。而密码技术的基础是数学,主要是数论, 代数和椭圆曲线论等数学理论。本课程结合信息安全和密码学的理论和工程实践,用严格的数学语言对信息安全和密码学所涉及的数学理论给出了详细的推理和说明,包括一些具体的例子,为学生以及从事信息安全工作的人打下坚实的理论基础,有助于跟上信息安全和密码学的最新进展,并提高创新能力和做出创新工作。
《信息安全数学基础》(1)主要涉及数论,教学内容分为七部分,对不同的内容提出不同的教学要求。
第一章 整数的可除性.要求:掌握整除、素数、最大公因数等的定义,熟练运用欧几里得除法和广义欧几里得除法。
第二章 同余。要求:掌握同余、剩余类、完全剩余系和简化剩余系等定义,熟练运用同余运算、欧拉定理、费马小定理以及模重复平方法。
第三章 同余式。要求:掌握同余式等的定义,熟练运用中国剩余定理以及它们大模运算和RSA公钥密码系统的应用。
第四章 二次同余式与平方剩余。 要求:掌握二次同余式和平方剩余等的定义,熟练运用勒让德符号和雅可比符号以及求模 p 平方根。
第五章 原根与指标。 要求:掌握原根、指数、指标等的定义,熟练运用原根判别法则以及会具体求原根。
第六章 素性检验。 要求:掌握费马素性检验、欧拉素性检验和米勒.拉宾素性检验等,熟练运用素性检验判别法则求较大素数。
第七章 连分数。 要求:掌握连分数、渐进连分数和简单连分数等的定义,熟练运用连分数的展开和求相关的连分数。
课程总结:
日期 | 详细信息 | 截止时间 |
---|---|---|