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A Proteome-Scale Map of the Human Interactome Network

A systematic map of 14,000 high-
quality human binary protein-
protein interactions.

Cell 2014 159, 1212-1226
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Other networks

Regulatory network

Gene regulatory
network inference
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Other networks

Disease Gene Networks
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Other networks

Drug-Target Networks

1052 FDA Approved Drugs

485 Known Protein Targets

Fig 3. Visualization of the bipartite drug-target network extracted from DrugBank. Orange
nodes represent drugs and blue nodes are known biomolecular targets. The network is
made of 1537 nodes (1052 drugs and 485 targets) and 1815 interactions extracted from 2240
research articles.

Ma’ ayan et al. Mt Sinai J Med (2007) 74:27
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Yildirim et al. Nat Biotechnol. (2007) 25:1110



Metabolic networks
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——
Centrality

 Relative importance of a node in the graph

d Which nodes are in the “center” of a graph?

o What do you mean by “center”?

o Definition of “center” varies by context/purpose

 “There is certainly no unanimity on exactly what centrality
IS or on its conceptual foundations, and there is little

agreement on the proper procedure for its measurement.”
----- by Freeman, 1979



——
Centrality

1 Real valued function on the nodes of a graph

] Structural index

d Applications:

v' How influential protein is in a PPl network?

v How important a TF is?



Centrality Measures

1 Degree centrality
1 Betweenness centrality

1 Closeness centrality



Degree centrality

» Local measure of the importance of a node within a graph

=  Sum of the weights of incident edges (in weighted graphs).

= Degree centrality assigns an importance score based simply on the
number of links held by each node.

= Node with the highest degree is important
Index of exposure to what is flowing through the network
Hub genes

Gossip network: central actor more likely to hear a gossip



Degree centrality

* Highest degree



Betweenness centrality

= Control on the optimal flow within a graph

* The number of shortest paths in the graph that pass through the
node divided by the total number of shortest paths.

Re 1p(i,k, ) i
BOW=EE ) I

where p(1, j) is the total number of shortest paths from node i to node j and
p(1,k, 1) is the number of those shortest paths that pass through k.



Betweenness centrality

= Shortest paths are:

= AB, AC, ABD, ABE, BC,
BD, BE, CBD, CBE, DBE

-




Betweenness centrality

= Nodes with a high betweenness centrality are interesting
because they
 control information flow in a network
* may be required to carry more information

= And therefore, such nodes
* may be the subject of targeted attack



Closeness centrality

= How fast information can spread from one node to every other node
= Anode is considered important if it is relatively close to all other nodes.

= The normalised inverse of the sum of topological distances in the graph.

Number of nodes

N -1

Zdl]

where d(i,j) is the distance (the number of edges in a shortest path) between vertices i and j.




Closeness centrality
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Closeness centrality
> j)
= Closeness
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=sNode B is the most central one in spreading information from it to the
other nodes in the network.



e Example:

Which node is most important?
O—©
Degree Closeness Betweeness

From highest D F, G H

F, G D, H F, G
to A, B A, B I

C,EH C E D
lowest I I A B

J J CD,J .




“Real” Networks are “Scale Free”

Barabasi and Albert. Science 286, 509 (1999)

Barabasi et al. found that many real networks including the Internet and the WWW are
scale-free. This means that the connectivity distribution of nodes fits a power-law.

They analyzed databases of metabolic networks in lower organisms and the
protein-protein interactions map of the yeast proteome inferred from high-

throughput yeast-2-hybrid screens. All shown to have scale-free connectivity
distribution.
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Degree Distribution

P(k) is probability of each degree k, i.e
fraction of nodes having that degree.

A Random network B Scale-free network

A . For random networks, P(k) is normally
distributed.
For real networks the distribution is
often a power-law:

Ab Bb P(k) ~ k"

N . \ Such networks are said to be scale-free

1 050012 For most networks, 2<7Y <3
k 4 10 100 1,000

Nature Reviews Genetics 5, 101-113 (2004)



Hierarchical Networks

B Scale-free network C Hierarchical network
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Detecting Hierarchical Organization

A Random network

B Scale-free network

C Hierarchical network
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Cellular networks are scale-free




Scale-Free Networks are Robust

* Complex systems (cell, internet, social networks), are
resilient to component failure

* Network topology plays an important role in this robustness

e Even if ¥80% of nodes fail, the remaining ~20% still maintain network
connectivity

» Attack vulnerability if hubs are selectively targeted

* In yeast, only ~¥20% of proteins are lethal when deleted, and
are 5 times more likely to have degree k>15 than k<5.



Knock-out Lethality and Connectivity
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Random network vs scale-free network

Random network
130 nodes, 215 edges

Homogeneous: most nodes
have approximately the
same number of links

Five red nodes with the
highest number of links
reach 27% of the nodes

Albert et al., Nature, 406:378, 2000

Scale-free network

130 nodes, 215 edges

Heterogeneous: the majority
of the nodes have one or
two links but a few nodes
have a large number of links

Five red nodes with the
highest degrees reach 60%
of the nodes (hubs)

26



Degree (hubs)-attack

Random Network, Accidental Node Failure

Before After

Scale-Free Network, Accidental Node Failure

A e ;%9‘
T e S
;/
R )




How to encode a graph

A graph is formed by a set of nodes or vertices (often called VV) and a
set of edges between these vertices (EE). Edges EE are provided as
unordered pairs of vertices in undirected graphs and ordered pairs for
directed or oriented graphs.

An adjacency matrix AA is the matrix representation of EE. AAis a
square matrix with as many rows as nodes in the graph. AA contains a
non zero entry in the it" row and ji column if there is an edge between
the it and jth vertices.

For graphs with undirected edges what is 2-
special about the adjacency matrix AA? 3-




How to encode a graph

The adjacency matrix is symmetric

library("igraph")
edgesl = matrix(c(1,3,2,3,3,4,4,5,4,6),byrow = TRUE, ncol = 2)
gl = graph_from_edgelist(edgesl, directed = FALSE)

plot(gl, vertex.size = 25, edge.width = 5, vertex.color = "coral")

We may do graph statistics though the various
packages, such as network, igraph.
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Topics

* Network and network topology

sNetwork reconstruction

* Network application

31



(1) Mass spectrometry screening (Pull-down)

A
Biological Affinity Protein Enzyme Peptide
sample purification separation digestion separation

3 o & J— /\/ ProFeiq list
@1 —) a) - — | - 4/07 o) = ‘| || -

w o e _r = Protein 4
@)

B LC MS Fragmentation
separation Survey scan MS/MS scan

—’

Mass Data
spectrometry analysis

m/z

Time m/z .
Acquired spectrum

|dentification

Database - TSAGLGK

searching

m/z

Theoretical spectrum

J Physiol. 2005 February 15; 563(Pt 1): 11-21.

Protein - In silico -

database digestion
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http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1665575/

A Protein Complex Network
of Drosophila melanogaster
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(2) MS-based Cross-linking strategy for PPI detection
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PPl network identification

Direct: from an experiment

Indirect: network reconstruction

often models are needed (=
- gene co-expression



Co-expression Networks

Nodes are connected if they have a significant pairwise
expression profile association across environmental

perturbations
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Correlation: pairwise similarity

1 Experiments p X  genes n
1
X ;
0 | « | Similarity matrix
e | Raw matrix &
o N
S (o))
Y O
n

Correlation (X,Y) =1
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Example: co-expression network

Correlation matrix

A B C

UEIOTMOUO®>

®

F G H I J

© ® O

© @

Correlation
threshold, t=1

o) 10/10

At t=1, there are no
edges, so all nodes
have degree (k) =0
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Example: co-expression network

Correlation matrix

: B c : | F : H | | _

k P(k)
o) 2/10
1 8/10

©
J@) % g At t=0.9, there are 4
®

@ edges, so 8 nodes

have degree (k) = 1

UEIOTMOUO®>




Example: co-expression network

Correlation matrix

B C D E F G H I J
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Clustering for network reconstruction

* Clustering: extract groups of genes that are tightly co-
expressed over a range of different experiments.

* Pattern discovery

* No prior knowledge required

41



Clustering algorithms

* Inputs:
« Similarity matrix
« Number of clusters or some other parameters

* Many different classifications of clustering
algorithms:
* Hierarchical vs partitional
* Heuristic-based vs model-based
 Soft vs hard

42



Hierarchical Clustering

« Agglomerative (bottom-up)
* Algorithm:
 Tnitialize: each item a cluster

e Tterate:
» select two most similar clusters
* merge them

dendrogram * Halt: when required number of
clusters is reached

43



Hierarchical clustering for network reconstruction

gene

A B C D E N Dendrogram (Manhattan distance)
array :
1|53 3 -1 0
213 1 2 -3-4 __, 5]
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Hierarchical clustering for network reconstruction

Cluster Dendrogram

Height

I

(m] w < m

0000 0005 0010 0015 0020 0025 0030 0035

True interactions?

OmOm0

Connect genes that are
In the same cluster
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Weighted Co-expression Networks

- SAGMB
« WGCNA

References:

* A general framework for weighted gene co-expression network
analysis (Zhang, Horvath SAGMB 2005)

« WGCNA: an R package for weighted correlation network analysis.
(Langfelder, Horvath BMC Bioinformatics 2008)

46



DISCUSSION

Any other type of data is helpful ?




Interolog Mapping: Orthologs

®Interest in Orthologs renst
. . . ] ) ) ) m‘ Interacting Proteins
Maintain function = Maintain interactions &)—

® Key concept: If A and B interact in one spe
orthologs A’ and B’ will interact

Protein-Protein
Orthologs Interologs

A A
|
I
|
|
|
I
I
|

Orthologs
® (A" & B’) = “interologs” of (A & B) e
® e /'\ Interacting Proteins
Defining Orthologs (2)- .
® Loose definition: Top-blast hit - Rice

® Stringent definition: Reciprocal top-blast hit

® Not all orthologs can be found using above
definitions

Gu et al (2011) PRIN: a predicted rice interactome network. BMC Bioinformatics.12:161, STRING Network



H. pylori (HP)

E. coli (EC) S. cerevisiae

B. burgorfe (B)
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Conclusion: P2 and P7 are linked

Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO, Assigning protein functions by comparative genome analysis: protein phylogenetic profiles.
Proc Natl Acad Sci U S A. 96(8):4285-8,. 1999



Protein Fusions

Monomeric proteins that are found fused in another organism
are likely to be functionally related and physically interacting.

Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D, Detecting protein function
and protein-protein interactions from genome sequences. Science 285(5428):751-3, 1999



GO similarity (gene function)

GO0005488
binding

GO:0045182 G0:0030528
setiption

tanslation regulator act, gulator act
0019842 G00003676 GO0.0016564
tamin bunding nucleic acid binding tranzcriptional repressor act

G0:0005498 GO:0005499 GO:0003677 700008135 GO:0016566

sterol camier act vitamin D binding DNA bincing translation factor act., nueleic acid binding specific tranweriptional repressor act.
G0:0003916 G0:0043565 GO0003684 G0:0003700 GO:0003746
DNA topoisomerase act. sequence-specific DNA binding damaged DNA binding transcription factor act. translation elongation factor act,
G0:0003917 G0:0042162 GO:0003688
DNA topoisomeraze type I act. telomeric DNA binding DNA replication ongin binding

Proteins with the same
biological function are
more likely to physically
interact than those
without. In addition,
proteins sharing a more
specific annotation are
more likely to interact
than those sharing a
commoner less specific
annotation.

S. Jain, et al. BMC Bioinformatics, 11:562, 2010.




Interaction Domain(DDI)

(a) Experimental PP data (b) Reliable DDI data based on struciures

- B — ——
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(C) Labeling proteins by their domains (d) PPls assigned to DDIs I
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" Database of DDIs
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Zhang et al, GAIA: a gram-based interaction analysis tool — an approach for identifying
interacting domains in yeast. BMC Bioinformatics 2009, 10(Suppl 1):S60
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Integrating experimental data

* Instead of using only one type of data use several types.

e This will:

* give more supporting evidence that a protein performs a certain
function.

* reduce the number of false positive and false negative interactions.

* give a more complete picture of the interactions between different
elements involved in a certain biological process.



Probabilistic network approach

Bayesian Approach

Each “interaction” link between two
proteins has a posterior probability of
existence, based on the quality of
supporting evidence.

Rhodes et al (2005). Nature Biotechnology 23(8):951-9.



Bayesian Approach

* A scalar score for a pair of genes is computed
separately for each information source.

* Using gold positives (known interacting pairs) and
gold negatives (known non-interacting pairs)
interaction likelihoods for each information source is
computed.

* The product of likelihoods can be used to combine
multiple information sources

* Assumption: A score from a source is independent from a
score from another source.



Bayesian Approach for PPl Prediction

The prior odds of interaction

The posterior odds of
interaction \b

X L{__

post — “prior Likelihood ratio

L = Pr(f;...f, | GSP) = Pr(f,...f, | GSN)

‘L=] [ Pr(f | GSP) = Pr(f, | GSN)
1=1

e Oyrior = P(pos) / P(neg),

Constant value



Computing the likelihoods

* Partition the pair scores of an information source into
bins and provide likelihoods for score-ranges

* E.g. Using the microarray information source and
using Pearson correlation for scoring protein pairs you
may get scores between -1 and 1. You want to know
what is the likelihood of interaction for a protein pair
that gets a Pearson correlation of 0.9.



Partitioning the scores

pearson cofrr. Likelihood (L)




Computing the likelihood

*  P(Interaction | Score) / P (Interaction)
L = oo e
P(~Interaction | Score) / P (~Interaction)

Pr(f | GSP) + Pr(f, | GSN)



Example:
Partitioning the scores

pearson corr. | P(exp|pos) | P(exp|neg) | Likelihood (L)

(0.8,1.0] 0.4 0.05 0.4/0.05=8

0.2,0.4] 0.15 0.12 0.15/0.12=1.25




Training data sets

Gold Standard Positive Gold Standard Negative
Proteins Proteins on the plasma membrane
L U) L I
-
A 1
C oH® Q-

0 O 2

£ .

S € <

o ® O = ¢ o

> 0O 7
O
J
o

von Mering, et al Nucleic Acids Res. 2005



Example

= A Bayesian networks approach for predicting protein-protein
iInteractions from genomic data

localization

Data type Dataset |# protein pairs JUsed for ...
: In-vivo pull-|Gavin et al. 31,304
Experimentaljoun ' [Ho etal 25 333lexpermental
Interaction : :
data Yeagt two- |Uetz et al. 981]interaction
hybrid lto et al. 4.393|data (PIE)
Expression Rosetta compendium 19,334,806
Other Cell cycle 17,467 ,005De novo
genomic Biological |GO biological process 3,146,286]prediction
features function MIPS function
Essentiality
Positives Proteins in the same 8 250 o
Gold MIPS complex ’ Training &
standards Negatives Proteins separated by 2.708.746 testing

Jansen et al. (2003) Science.



Some data ... ...

Gold standard overlap

Expression correlation # protein pairs pos neg P(exp|pos) | P(exp|neg) L

0.9 617 16 45 2.10E-03 1.68E-05| 124.93

0.8 4,127 137 563 1.80E-02 2.10E-04| 85.50

0.7 14,979 530 2,117 6.96E-02 7.91E-04| 87.97

0.6 36,145 1,073 5,697 1.41E-01 2.09E-03| 67.36

0.5 81,102 1,089 14,459 1.43E-01 5.40E-03| 26.46

0.4 189,369 993 35,350 1.30E-01 1.32E-02 0.87

0.3 444,757 1,028 83,483 1.35E-01 3.12E-02 4.33

0.2 1,016,105 870 183,356 1.14E-01 6.85E-02 1.67

2 101 2,205,895 739 368,469 9.71E-02 1.38E-01 0.70
=10 8,118,256 894 1,244,477 1.17E-01 4.65E-01 0.25
> |-041 2,345,009 164 408,562 2.15E-02 1.53E-01 0.14
-0.2 1,038,181 63 203,663 8.27E-03 7.61E-02 0.11

-0.3 399,554 13 84,957 1.71E-03 3.18E-02 0.05

-04 131,361 3 28,870 3.94E-04 1.08E-02 0.04
-0.5 40,759 2 8.091 2.63E-04 3.02E-03 0.09

-0.6 15,289 - 2,134 0.00E+00 7.98E-04 0.00

-0.7 6,795 - 807 0.00E+00 3.02E-04 0.00

-0.8 1,886 - 261 0.00E+00 9.76E-05 0.00
0.9 55 - 12 0.00E+00 4.49E-06 0.00
Sum 16,090,241 7,614 2,675,273 1.00E+00 1.00E+00 1.00




Somedata ... ...

Essentiality # protein pairs Gzl:s-standard o’\;zgap P(Ess|pos) | P(Ess|neg) L
¢ |EE 301,088 1,114 81,924 5.18E-01 1.43E-01 3.63
% NE 2,481,701 624 285,487 2.90E-01 4.98E-01 0.58
> |NN 4,771,865 412 206,313 1.92E-01 3.60E-01 0.53
Sum 7,554,654 2,150 573,724 1.00E+00 1.00E+00 1.00

GO biological process similarity | # protein pairs G::;:lsstandard o'\;igap P(GO|pos) | P(GO|neg) L
1-9 4,789 88 819 1.17E-02 1.27E-03 9.22
¢ [10--99 20,467 555 3,315 7.38E-02 5.14E-03| 14.36
% 100 - 1000 58,738 523 10,232 6.95E-02 1.59E-02 4.38
> (1000 -- 10000 152,850 1,003 28,225 1.33E-01 4.38E-02 3.05
10000 — Inf 2,909,442 5,351 602,434 7.12E-01 9.34E-01 0.76
Sum 3,146,286 7,520 645,025 1.00E+00 1.00E+00 1.00

If we set L.,=600, given protein A and B, their expression correlation=0.85,
GO similarity=156, Essentiality value=EE, is there interaction between them?

L=85.50%3.63*4.38=1359.40 > 600




More examples

Ortholog interaction datasets: DIP Coexpression matrices: Oncomine

Map ortholog proteins to
human proteins - Inparanoid

‘ Likelihood ratio calculations ‘
Filter most predictive datasets

L

£ I £ I S

Likelihood ratio calculations ‘ J( J{ l J{ J/

max(LR) per pair max(LR) per pair

Stratify predicted interactions
into confidence bins

Ortholog X Coexpression

X

Shared biological function: GO

Identify smallest shared biological
process for each pair of proteins

!

‘ Likelihood ratio calculations ‘

l

Enriched domain pair: Interpro

Divide known interactions
into training and test sets

Training
Identify enriched
domain pairs

Test

I s I

ratio calculations

Overlap likelihood

max(LR) per pair

Shared function and
enriched domains

L.

N\

J

Likelihood ratio calculations

=LR

comp

Rhodes, et al. Probabilistic model for the human protein-protein interaction network,

Nature Biotechnology (2005)



Topics

* Network and network topology

=* Network reconstruction

*Network application
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Network application in biomedicine

B Gene/Protein functional annotation
B Key/disease gene prioritization

B Network-based biomarker or molecular signature



Protein function prediction

-
- wnknewn | 5 cerevisiae Celegans  D.melanogasier A, thaliona M. musculus

2005

150

11658

Biological
process

Molecular

function
- o
Cellular
component o
o (LR

H. sapiens
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What can we do with

these molecular

networks?

Using the position in
networks to describe
function

Guilt by association

Rod Blagojevich
Governor

Antoin ‘Tony’ R A
Rezko Chris Kelly
Campaigr b [ .‘ Campaign
fundraise: E i, / fundraiser

STATE HEALTH AND

PENSION BOARDS Q Lobbyist 1 Q
\ /\
Stuart { - - b (
Levine |8 \f» Individual A Fund-raiser A
Board !

member

) Individual B Engineering

Firm 1
llinois
Health / -
E;:\cnmes g B o N g L Hospital J
anning illiam Cellini i ! i 8
Board TRS Board member Lt Highway Exsoliis 1 Contributor 1

Contractor 1

MICHAEL BROWN, FEMA,
FEDERAL AGENCIES

“I's the responsibility of faith-based
‘organizations, of churches and charities
and others to help those peoplo.”

“You cannot read a newspaper
without the gloating and the
53 happiness with which the
5 mainstream press is reporting the
F president's approval numbers.”

B8 Marsh The New Yok Tames

CHICAGO
TRIBUNE

Editorial
Board

Finding the causal
s regulator
(the "Blame Game")

Wrigley
Field

Sam Zell
Owner of the
Tribune Company
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Protein function prediction

s,  EMajority voting (Local)
S &% - WK-neighborhood
-Generalized majority voting

BChi square

- Functional enrichment among the k-
neighborhood as measured by the chi

Unknown
function?

w\ \oo a square score
BModule-assisted
S - Module identification
8, 4\ - Functional enrichment evaluation
L= \
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Key/disease gene prioritization

Degree ?
Betweenness ?

Alex's good friend from high school

‘works with him at Facebook. He
onmects to much of Alex's network.
even to his wife and mother.

ALEX'S FRIENDS
Aiox Smith s a esearchar a Facebook
| Tis i how is ends neract on e s,




Network-based risk evaluation for SAPs in cancer

Important node
<ap LERRYGIHQAYS
LERZRYVGIHOQAYS /
L E RV GIH Q AYS
LERRYVGIHOQAYS '
LERKVG| QFYS \
Interface LERZKVG QA YS 4
LERZKV G Q AYS Cancer node
Neutral node
|-score S-score T-score
Condel
ZiSix W
WAS = —//——
W,
Meta-score
Rank SAP Meta-score |-score S-score T-score
1 KRAS:G12D 0.97 1 1.00 0.90
2 CTSS:R113W 0.95 1 0.87 0.96
3 RTN4:A71T 0.74 0 1.00 0.90
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EEE———————
Big Challenges

» Strategies for explaining unmatched spectrum (30%-50%)

* How to refine genome annotation using proteome and transcriptome data
* How to do protein identification when the reference genome is unknown
* Omics integration and clinical application

* Single cell , meta-omics, pan-omics, phen-omics ?
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