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Topical today

• Image Enhancement

• Spatial Filtering

• Frequency Filtering



Image Enhancement



Point processing and mask processing

• Space-domain image 
enhancement techniques can 
be further classified into two 
general categories: point 
processing and mask 
processing

Schematic diagram of (a) mask processing and (b) point processing techniques



Point processing

• What can they do?
• What’s the form of T?
• Important:every pixel for 

himself, which means 
spatial information 
completely lost!

Intensity transformation functions. (a) Contrast stretching function. (b) 
Thresholding function. 



Point processing

• Some basic intensity transformation functions

Each curve was scaled independently 
so that all curves would fit in the 
same graph. Our interest here is on 
the shapes of the curves, not on 
their relative values. 



Point processing

• Image negatives

Left: A digital mammogram. Right: Negative image obtained using 
s=L-1-r . (Image left Courtesy of General Electric Medical Systems.) 

Reversing the intensity levels of a 
digital image in this manner 
produces the equivalent of a 
photographic negative. This type of 
processing is used, for example, in 
enhancing white or gray detail 
embedded in dark regions of an 
image, especially when the black 
areas are dominant in size. 



Point processing

• Power-Law(Gamma) Transformations

Power-law transformations have the form 

where c and are positive constants. Figure right 
shows plots of s as a function of r for various values 

of 𝛾. The response of many devices used for image 
capture, printing, and display obey a power law. By 
convention, the exponent in a power- law equation 
is referred to as gamma. The process used to 
correct these power-law response phenomena is 
called gamma correction or gamma encoding. 



Point processing

(a) Image of a human retina. (b) Image 
as as it appears on a monitor with a 
gamma setting of 2.5 (note the 
darkness). (c) Gamma- corrected image. 
(d) Corrected image, as it appears on 
the same monitor (compare with the 
original image). (Image (a) courtesy of 
the National Eye Institute, NIH) 

• Power-law transformations



Point processing

In addition to gamma correction, power-law 
transformations are useful for general-purpose 
contrast manipulation. shows a magnetic resonance 
image (MRI) of a human upper thoracic spine with a 
fracture dislocation. The fracture is visible in the 
region highlighted by the circle. Because the image is 
predominantly dark, an expansion of intensity levels is 
desirable. This can be accomplished using a power-law 
transformation with a fractional exponent. The values 
of gamma corresponding to images (b) through (d) are 
0.6, 0.4, and 0.3, respectively (c = 1 in all cases). 
Observe that as gamma decreased from 0.6 to 0.4, 
more detail became visible. 

• Power-law transformations



Point processing

Figure right shows the opposite problem of 
that presented above. The image to be 
processed now has a washed-out appearance, 
indicating that a compression of intensity 
levels is desirable. This can be accomplished 
with 𝑠 = 𝑐𝑟! using values of 𝛾 greater than 1. 
The results of processing (a) with = 3.0, 4.0, 
and 5.0 are shown in (b) through (d), 
respectively. Suitable results were obtained 
using gamma values of 3.0 and 4.0. The latter 
result has a slightly more appealing 
appearance because it has higher contrast. 

• Power-law transformations



Point processing

• Contrast Stretching

Contrast enhancement using point processing

Contrast enhancement with stretching is 
a method to create better visibility of a 
particular range  of gray level that 
corresponds to the object to be studied. 
In practice, we often select these values 
such that the interval [s1, s2] covers the 
gray-level range of the object of interest 
and the interval [r1, r2] provides the 
desired range of gray level for a better 
visibility of the object in the target 
image   



Contrast Enhancement

(a) Original image and (b) image after point processing  (Courtesy of Andre  D’Avila, MD, Heart Institute (InCor), University of
Sao Paulo, Medical School, Sao Paulo, Brazil ) 



Point processing

• Intensity-level slicing
There are applications in which it 
is of interest to highlight a specific 
range of intensities in an image. 
Some of these applications include 
enhancing features in satellite 
imagery, such as masses of water, 
and enhancing flaws in X-ray 
images. (a) This transformation 
function highlights range [A, B] and 
reduces all other intensities to a 
lower level. (b) This function 
highlights range [A, B] and leaves 
other intensities unchanged. 



Intensity-Level Slicing

(a) Aortic angiogram. (b) Result of using a slicing transformation of the type illustrated in above (a) , with the range of intensities of interest 
selected in the upper end of the gray scale. (c) Result of using the transformation in above (b) , with the selected range set near black, so that the 
grays in the area of the blood vessels and kidneys were preserved. 



Point processing

• Bit-plane slicing Pixel values are 
integers composed of 
bits. For example, 
values in a 256-level 
gray-scale image are 
composed of 8 bits 
(one byte). Instead 
of highlighting 
intensity-level 
ranges, we could 
highlight the 
contribution made to 
total image 
appearance by 
specific bits. 



Point processing
• Bit-plane slicing

(a) An 8-bit gray-scale image of size 837 ×
988 pixels. (b) through (i) Bit planes 8 
through 1, respectively, where plane 1 
contains the least significant bit. Each bit 
plane is a binary image. Figure (a) is an SEM 
image of a trophozoite that causes a disease 
called giardiasis. 
(a) shows an 8-bit gray-scale image and (b) 
through (i) are its eight, one-bit planes, with 
(b) corresponding to the highest (most 
significant) bit plane. Observe that the 
highest-order four planes, especially the 
higher two, contain a great deal of the 
visually significant data. 



Point processing
• Bit-plane slicing

Image reconstructed from bit planes: (a) 8 and 7; (b) 8, 7, and 6; (c) 8, 7, 6, and 5. 



Point processing

• Histogram Processing
▫ Histograms are the basis for numerous spatial domain processing techniques
▫ Histograms are the statistical diagrams of gray level distribution

•For continuous gray level
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Point processing

• Histogram Processing
•For discrete gray level

where 𝑟" is the k-th intensity value and 𝑛"is the number of pixels in the image with 
intensity 𝑟". Thus, a normalized histogram is given by

M and N are the row and column dimensions of the image. And we have
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Point processing

• Histogram Processing
Four image types and 
their corresponding 
histograms. (a) dark; (b) 
light; (c) low contrast; (d) 
high contrast. The 
horizontal axis of the 
histograms are values of 
and the vertical axis are 
values of 𝑝(𝑟"). 



Point processing

• Histogram Processing



Point processing



Histogram Usage



Point processing

• Histogram Processing
•Histograms haven’t any position information. Reshuffling all pixels within the image

Its histogram won’t change. No point processing will be affected…

Spatial information is discarded



Point processing

• Histogram Processing
▫ Histogram equalization

� The histogram of is a uniform histogram

▫ Histogram specification
� The histogram of has a specified shape

▫ Histogram equalization is a special example of histogram specification
▫ Theoretical argument of histogram equalization

� Principle of the biggest entropy

� While the histogram is equalized, the entropy of the image is biggest, which means that the 
human visual system can obtain the maximum information
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Histogram Equalization

Transformation function

Assume that:
(a) T(r) is a monotonically increasing function in the interval

(b) 
In some formulations to be discussed later, we use the inverse

change condition (a) to
(a’) T(r) is a strictly monotonically increasing function in the interval
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Histogram Equalization

(a) Monotonic 
increasing function, 
showing how 
multiple values can 
map to a single 
value. (b) Strictly 
monotonic 
increasing function. 
This is a one-to-one 
mapping, both 
ways. 



Histogram Equalization

• 𝑝!(𝑟) and 𝑝" 𝑠 denote the PDFs of r and s, respectively. 𝑝!(𝑟) and T(r) are 
known and T(r) is continuous and differentiable. Then the PDF of the 
transformed variable s can be obtained using the simple formula

• A transformation function of particular importance in image processing has 
the form
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Histogram Equalization
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Histogram Equalization

(a) An arbitrary PDF. (b) Result of applying equation upper-right to the input PDF. The resulting PDF is 
always uniform, independently of the shape of the input. 
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Histogram Equalization

• For discrete values, we deal with probabilities (histogram values) and 
summations instead of probability density functions and integrals. The 
condition s of monotonicity stated earlier apply also in the discrete case

• A plot of 𝑝! 𝑟# versus 𝑟# is commonly referred to as a histogram
• The discrete form of the transformation is
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Histogram Equalization

(a) Image from Phoenix Lander. 
(b) Result of histogram 
equalization. (c) Histogram of 
image (a). (d) Histogram of image 
(b). (Original image courtesy of 
NASA.) 



Histogram Equalization

(a) Original image  (b) 
Transformed image after 
histogram equalization  (c) Gray-
level histogram of the original 
image  (d) Histogram of the image 
after histogram equalization   
(Courtesy  of  Andre  D’Avila,  MD,  
Heart  Institute  (InCor),  
University  of  Sao  Paulo,  
Medical  School, Sao Paulo, Brazil 
) 



Spatial Filtering



Mask Processing: Learning Filtering In Space Domain

It is often the case that instead of linear 
processing of images using filters described  in 
frequency domain, space-domain linear filters 
are used in typical image processing  
applications. This  is  mainly  to  the  fact  that  
frequency-domain  description  of  two-
dimensional (2-D) filters is often more complex 
than the one-dimensional (1-D)  filters. In 
principle, space-domain linear filters 
approximate the impulse response of  various 
kinds of typical frequency-domain filters with a 
2-D mask  In spatial filtering, as described 
before, a weight mask is used to express the 
effect of the filter on  each pixel of the image 
in an insightful fashion.  

Typical 3×3 mask. 



Spatial Filtering

• The mechanics of spatial filtering

▫ For  a mask of size 3 by 3

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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Spatial Filtering

• Low-Pass Filters

Low-pass filters attenuate or eliminate high-frequency components of an image such as 
edges, texture, and other sharp details. Low-pass filters that are often used for applications 
such as smoothing, blurring, and noise reduction provide a smooth version of the original 
image. A low-pass filter is sometimes used as a preprocessing step to remove unimportant  
details from an image before object extraction.   

(a and b) Two typical masks used for low-pass filtering  



Spatial Filtering

• Low-Pass Filters

(a) Original 
image and (b) 
image after 
applying low-
pass filter  



Spatial Filtering

• Median Filters
Median  filters  are  statistical  nonlinear  filters  that  are  often  described  in  the  space  domain  
Median filters are known to reduce the noise without eliminating the edges and  other high-frequency 
contents  Median filters (also referred to as order statistics filters)  perform the following operations to 
find each pixel value in the processed image: 

As defined earlier, median filter create pixel values of the filtered image based on the sort- ing of the 
gray level of pixels in the mask around the central pixels in the original image  



Spatial Filtering

• Median Filters

Mask of median filter  

The performance of a 3 × 3 median 
filter on a sub image is illustrated in 
Figure 3.12. As can be seen from 
Figure 3.12, the median filter selects 
the median of the gray- level values in 
the 3 × 3 neighborhood of the central 
pixel and assigns this value as the 
output. In this example, the median 
filter is to select the median of 
following set: {8 10 10 12 12 23 45 
64}. According to the sorted list, the 
response of the filter is 12 



Spatial Filtering

• Median Filters

(a) Noisy image and (b) 
median-filtered image.

Median  filter  has  reduced  
the  noise  in  the  image  
without destroying the 
edges  This is the main 
advantage of the median 
filters over the  linear low-
pass filters  



Spatial Filtering
(a) Original image, (b) noisy image, (c) image after low-pass filter, and  
(d)  image  after  median  filter.  
Evidently, the low-pass filter has reduced the noise level in the image; 
however, at the same time, the filter has blurred the image. On the 
other hand, while median filter has also reduced the noise, it has 
preserved the edges of the image almost entirely. Again, this difference 
is due to the fact that the median filter forces the pixels with distinct 
intensities to be more like their neighbors and therefore eliminates 
isolated intensity spikes  Such a smoothing criterion will not result in 
significant amount of filtering across edges.  
Median filters, however, have certain disadvantages  When the number 
of noisy pixels is greater than half of the total pixels, median filters give 
a poor performance  This is because, in such cases, median value will be 
much more influenced by dominating noisy values than the non-noisy 
pixels  In addition, when the additive noise is Gaussian in nature, median 
filters may fail to provide a desirable filtering performance  



Spatial Filtering

• Sharpening spatial filters
▫ High-pass filters

As  in  linear  low-pass  filters,  the  masks  used  
for  high-pass  filtering  are  nothing  but  the  
truncated  approximations  of  the  space-
domain  representation  of  the  typical  ideal  
high-pass  filters   As  such,  in  high-pass  filters  
the  shape  of  impulse  response should have (+) 
coefficients near its center and (−) coefficients 
in the outer periphery  

Typical mask of linear high-pass spatial filter  



Spatial Filtering

• Sharpening spatial filters

(a) Original image and (b) image 
after sharpening spatial filter  



Spatial Filtering

• Sharpening spatial filters
▫ High-boost filters

Some extensions of high-pass filters, while highlighting the high frequencies, preserve  some 
low-frequency components and avoid negative pixel values  The most commonly  used  
extensions  of  high-pass  filters  are  high-boost  filters  that  are  also  referred  to  as  high-
frequency emphasis filters  

High-boost mask



Spatial Filtering

• Sharpening spatial filters
▫ High-boost filters

High-boost filtered image = (A −1) original image + high-pass filtered image.
Or simply, in terms of filters: 



Spatial Filtering

(a) Original image, (b) filtered image 
with A = 1 1, (c) filtered image with  A 
= 1 15, and (d) filtered image with A = 
1 2  



Spatial Filtering

• Sharpening spatial filters
▫ Derivative filters

As  we  saw  in  the  previous  sections,  image  blurring  can  be  caused  by  
averaging   Since averaging is simply the discrete version of spatial 
integration, one can expect  that spatial differentiation would result in 
image sharpening  This observation about  spatial differentiation is the main 
idea behind a family of sharpening filters called  “derivative filters ” In 
order to find suitable masks for spatial differentiation, we need  to study 
the concept of differentiation in digital 2-D spaces more closely  



Derivative Filters
Since an image is a 2-D signal, instead of simple 1-D differentiation, the direc-
tional differentiations must be calculated in both horizontal and vertical 
directions. This leads to spatial gradient defined as follows: 

(1)



Derivative Filters
The  partial  differentiations  such  as  ∂f/∂x  can  be  approximated  in  discrete  
image simply by calculating the difference in the gray level of two neighboring 
pixels, i.e., 

(2)



Derivative Filters
Note  that  since  the  smallest  value  to  approximate  ∂x  is  one  pixel,  we  ended  up  
replacing  this  value  with 1. Also  note  that  the  final  value  in  (1)  is  an  integer (positive or 
negative). This is due to the fact that subtraction of two integers  (i.e., f(x, y) − f(x − 1, y)) 
would always give an integer value  Back to the continuous  gradient, the magnitude of the 
gradient vector is given by 

(3)



Derivative Filters
Now,  note  that  storing  integers  in  digital  computers  is  significantly  more  efficient  than 
storing real numbers that require floating points  In addition, performing calculations with 
integers are faster and more efficient than doing calculations with real  numbers  These two 
observations strongly encourage the use of integers for image  processing in which large images 
must be stored and processed  Since the result of  (2) is almost always a real number, we need to 
approximate this operation  such that the resulting number stays an integer.  
The  approximation  of  (2) typically  used  in  image  processing  is  as  follows: 

(4)

This approximation does not only give us a positive integer, but it also reduces the  time 
complexity of calculating the magnitude of the gradient vector  



Frequency Filtering



Frequency Filtering

• Why filtering in the frequency domain

▫ The filtering methods in different domains can correspond to each other, 
but some operations will be better implemented in a certain domain.



Frequency Filtering

• Smooth filters in frequency domain
▫ The main objective in smoothing an image is to decrease the noisy fast 

variations in  the gray levels of the image  Since the fast variations in 
gray level of digital images  correspond to high frequencies in DFT of the 
image, a filter that attenuates the high- frequency values of the DFT of 
the original image is simply a low-pass filter  



Frequency Filtering

• Smooth filters in frequency domain
▫ Idea low-pass filter

where



Frequency Filtering

• Smooth filters in frequency domain
▫ Butterworth low-pass filters

where D(u,  v)  is  the  distance  from  the  origin  in  the  frequency  
domain,  as  previously defined.  



Frequency Filtering

• Sharpening filters in frequency domain
▫ Ideal high-pass filters



Frequency Filtering

• Sharpening filters in frequency domain
▫ Butterworth high-pass filters

where D(u, v) is the distance from the origin in the frequency domain  



Thank You!


