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Topical today

• Image Restoration and Reconstruction



Compare with Image enhancement

• Both of their goal is to improve an image in some predefined 
sense.

• Although there are areas of overlap, image enhancement is 
largely a subjective process, while image restoration is for the 
most part an objective process.



Why we restoration or reconstruction

• Medical signals easy to be corrupted, e.g. Low-dose CT imaging introduces 
Poisson noise. 

• Restoration attempts to recover an image that has been degraded by using 
a priori knowledge of the degradation phenomenon. Thus, restoration 
techniques are oriented toward modeling the degradation and applying the 
inverse process in order to recover the original image. 

• reconstruction from projections, and their application to computed 
tomography (CT), one of the most important commercial applications of 
image processing, especially in health care. 



Model of the Image Degradation/Prestoration Process

We model image degradation as an operator H that, together with an additive noise term, operates on an input image f(x, y) 
to produce a degraded image g(x, y) (see figure above). Given g(x, y), some knowledge about H, and some knowledge 
about the additive noise term 𝜂(𝑥, 𝑦), the objective of restoration is to obtain an estimate '𝑓(𝑥, 𝑦) of the original image. We 
want the estimate to be as close as possible to the original image and, in general, the more we know about H and , the 
closer '𝑓(𝑥, 𝑦) will be to f(x, y). 



Model of the Image Degradation/Prestoration Process

• If H is a linear, position-invariant process, then the degraded image is given in the spatial domain by

• In the frequency domain 



Model of the Image Degradation/Prestoration Process

• In the spatial domain

• In the frequency domain 

• Our purpose is to recover 𝑓(𝑥, 𝑦) from the noise image 𝑔(𝑥, 𝑦), which is almost the same as to
remove noise 𝜂(𝑥, 𝑦) from the 𝑔(𝑥, 𝑦) if we don’t consider the impact of ℎ(𝑥, 𝑦).

• To remove noise efficiently, it is better to know the noise model first;
• To build a model for an unknow noise image, it is better to know all the existing and widely noise

models



Noise Models

• The principal sources of noise in digital images arise during 
image acquisition and/or transmission. The performance of 
imaging sensors is affected by a variety of environmental factors 
during image acquisition, and by the quality of the sensing 
elements themselves 

• In the view of removing noise, it is essential to understand the 
spatial and frequency properties of noise. For example, when 
the Fourier spectrum of noise is constant, the noise is called 
white noise. 



Noise Models

• Some Important Noise Probability Density Functions



Noise Models

• Gaussian Noise

The probability density functions of Gaussian noise

The PDF of a Gaussian random variable z:

where z represents intensity, ̅𝑧 is the mean 
(average) value of z, and 𝜎 is its standard 
deviation. Figure right shows a plot of this 
function. The probability that values of z are in the 
range ̅𝑧 ± 𝜎 is approximately 0.68; the probability 
is about 0.95 that the values of z are in the range 
̅𝑧 ± 2𝜎. 



Noise Models

• Rayleigh Noise

The probability density functions of Rayleigh noise

The PDF of Rayleigh noise is given by:

The mean and variance of z when this random 
variable is characterized by a Rayleigh PDF are:

and



Noise Models

• Erlang(Gamma) Noise

The probability density functions of Erlang noise

The PDF of Erlang noise is:

Where the parameters are such that 𝑎 > 𝑏, b is a 
positive integer, and “!” indicates factorial. The 
mean and variance of z are :

and



Noise Models

• Exponential Noise

The probability density functions of Exponential noise

The PDF of Erlang noise is:

Where 𝑎 > 0. The mean and variance of z are:

and



Noise Models

• Uniform Noise

The probability density functions of Uniform noise

The PDF of uniform noise is:

The mean and variance of z are:

and



Noise Models

• Salt-and-Pepper Noise

The probability density functions of Salt-and-pepper noise

The PDF of salt-and-pepper noise is:

where k represents the number of bits used to 
represent the intensity values in a digital image. 
The V is any integer value in the range 0 < 𝑉 <
2! − 1.



Noise images and their histograms

• Test pattern used to illustrate the characteristics of the PDFs above



Noise images and their histograms
• Images and histograms resulting from adding Gaussian, Rayleigh, and the Erlanga noise to 

the test pattern. 



Noise images and their histograms
• Images and histograms resulting from adding exponential, uniform, and salt-and-pepper 

noise to the test pattern. 



Periodic Noise
• Periodic noise in images typically arises from electrical or electromechanical interference 

during image acquisition. This is the only type of spatially dependent noise we will consider in 
this section. (a) Image corrupted by additive sinusoidal noise. (b) Spectrum showing two 
conjugate impulses caused by the sine wave. 



Estimating Noise Parameters

• The parameters of periodic noise typically are estimated by inspection of the Fourier spectrum. 
Periodic noise tends to produce frequency spikes that often can be detected even by visual 
analysis. Another approach is to attempt to infer the periodicity of noise components directly 
from the image, but this is possible only in simplistic cases. Automated analysis is possible in 
situations in which the noise spikes are either exceptionally pronounced, or when knowledge is 
available about the general location of the frequency components of the interference.

• The parameters of noise PDFs may be known partially from sensor specifications, but it is often 
necessary to estimate them for a particular imaging arrangement. If the imaging system is 
available, one simple way to study the characteristics of system noise is to capture a set of 
“flat” images. For example, in the case of an optical sensor, this is as simple as imaging a solid 
gray board that is illuminated uniformly. The resulting images typically are good indicators of 
system noise. 



Estimating Noise Parameters
• When only images already generated by a sensor are available, it is often possible to estimate 

the parameters of the PDF from small patches of reasonably constant background intensity. 

Histograms computed using small strips (shown as inserts) from (a) the Gaussian, (b) the 
Rayleigh, and (c) the uniform noisy images in the test pattern. 

The histograms 
shown were 
calculated using 
image data from 
these small 
strips. 



Restoration in the presence of Noise Only Spatial Filtering

• When an image is degraded only by additive noise, we have:

and

The noise terms generally are unknown, so subtracting them from g(x, y) [G(u, v)] to obtain 
f(x, y) [F(u, v)] typically is not an option. In the case of periodic noise, sometimes it is 
possible to estimate N(u, v) from the spectrum of G(u, v), as noted in Section 5.2 . In this 
case N(u, v) can be subtracted from G(u, v) to obtain an estimate of the original image, but 
this type of knowledge is the exception, rather than the rule. 
Spatial filtering is the method of choice for estimating f(x, y) [i.e., denoising image g(x, y)] in 
situations when only additive random noise is present. Spatial filtering was discussed in detail 
before. 



Mean Filters

• Arithmetic Mean Filter

• Geometric Mean Filter

• Harmonic Mean Filter

Let 𝑆)* represent the set of 
coordinates in a rectangular 
subimage window 
(neighborhood) of size 𝑚×𝑛 , 
centered on point (x, y). %𝑓 is 
the restored image. The r 
and c are the row and column 
coordinates of the pixels 
contained in the 
neighborhood 𝑆)*.



Mean Filters

• Contraharmonic Mean Filter
The contraharmonic mean filter yields a restored image based on the expression: 

where Q is called the order of the filter. This filter is well suited for reducing or virtually 
eliminating the effects of salt-and-pepper noise. For positive values of Q, the filter eliminates 
pepper noise. For negative values of Q, it eliminates salt noise. It cannot do both 
simultaneously. Note that the contraharmonic filter reduces to the arithmetic mean filter if Q 
= 0, and to the harmonic mean filter if Q = -1. 



Example:Image denoising using spatial mean filters

(a) X-ray image of circuit board. (b) Image 
corrupted by additive Gaussian noise. (c) Result 
of filtering with an arithmetic mean filter of size 
3 × 3. (d) Result of filtering with a geometric 
mean filter of the same size.

(a) shows an 8-bit X-ray image of a circuit 
board, and (b) shows the same image, but 
corrupted with additive Gaussian noise of zero 
mean and variance of 400. For this type of 
image, this is a significant level of noise. (c) and 
(d) show, respectively, the result of filtering the 
noisy image with an arithmetic mean filter of 
size 3 × 3 and a geometric mean filter of the 
same size. 



Example:Image denoising using spatial mean filters

(a) Image corrupted by pepper noise with a 
probability of 0.1. (b) Image corrupted by salt 
noise with the same probability. (c) Result of 
filtering (a) with a 3 × 3 contraharmonic filter = 
1.5. (d) Result of filtering (b) with = − 1.5. 



Example:Image denoising using spatial mean filters

Results of 
selecting the 
wrong sign in 
contraharmonic
filtering. (a) 
Result of filtering 
Fig. 5.8(a) with a 
contraharmonic
filter of size 3 ×
3 and = − 1.5. (b) 
Result of filtering 
Fig. 5.8(b) using 
= 1.5. 



Order-Statistic Filters

• Median Filter

• Max and Min Filters

• Midpoint Filter



Order-Statistic Filters

• Alpha-Trimmed Mean Filter

where the value of d can range from 0 to mn-1. When d = 0 the alpha-trimmed filter reduces 
to the arithmetic mean filter discussed earlier. If we choose d = mn − 1, the filter becomes a 
median filter. For other values of d, the alpha-trimmed filter is useful in situations involving 
multiple types of noise, such as a combination of salt-and-pepper and Gaussian noise. 

Suppose that we delete the d/2 lowest and the d/2 highest intensity values of g(r, c) in the 
neighborhood . Let 𝑔"(𝑟, 𝑐) represent the remaining mn − d pixels in 𝑆#$. A filter formed by 
averaging these remaining pixels is called an alpha-trimmed mean filter. The form of this 
filter is 



Examples:Image denoising using order-statistic filters

(a) Image corrupted by salt-and-pepper 
noise with probabilities = = 0.1. (b) Result 
of one pass with a median filter of size 3 
× 3. (c) Result of processing (b) with this 
filter. (d) Result of processing (c) with the 
same filter. 



Examples:Image denoising using order-statistic filters

(a) Result of filtering image 
adding pepper noise with a 
max filter of size 3 × 3. (b) 
Result of filtering image 
adding salt noise with a min 
filter of the same size. 



Examples:Image denoising using order-statistic filters

(a) Image corrupted by additive 
uniform noise. (b) Image additionally 
corrupted by additive salt-and-
pepper noise. (c)-(f) Image (b) 
filtered with a 5 × 5: (c) arithmetic 
mean filter; (d) geometric mean 
filter; (e) median filter; (f) alpha-
trimmed mean filter, with = 6. 

b d f
a c e



Adaptive Filters

• Once selected, the filters discussed thus far are applied to an image without regard for 
how image characteristics vary from one point to another. In this section, we take a look 
at two adaptive filters whose behavior changes based on statistical characteristics of the 
image inside the filter region defined by the m×n rectangular neighborhood 𝑆#$. As the 
following discussion shows, adaptive filters are capable of performance superior to that of 
the filters discussed thus far. The price paid for improved filtering power is an increase in 
filter complexity. Keep in mind that we still are dealing with the case in which the 
degraded image is equal to the original image plus noise. No other types of degradations 
are being considered yet. 



Adaptive,Local Noise Reduction Filter

• Our filter is to operate on a neighborhood, 𝑆#$, centered on coordinates (x, y). The 
response of the filter at (x, y) is to be based on the following quantities: g(x, y), the value 
of the noisy image at (x, y); 𝜎%&, the variance of the noise; ̅𝑧'!", the local average intensity 
of the pixels in 𝑆#$; and 𝜎'!"

& , the local variance of the intensities of pixels in 𝑆#$. We want 
the behavior of the filter to be as follows: 

1. If 𝜎%& is zero, the filter should return simply the value of g at (x, y). This is the 
trivial, zero-noise case in which g is equal to f at (x, y). 

2. If the local variance 𝜎'!"
& is high relative to 𝜎%&, the filter should return a value close 

to g at (x, y). A high local variance typically is associated with edges, and these 
should be preserved. 

3. If the two variances are equal, we want the filter to return the arithmetic mean 
value of the pixels in . This condition occurs when the local area has the same 
properties as the overall image, and local noise is to be reduced by averaging. 



Adaptive,Local Noise Reduction Filter

• An adaptive expression for obtaining %𝑓(𝑥, 𝑦) based on these assumptions 
may be written as:

The only quantity that needs to be known a priori is , the variance of the noise 
corrupting image f(x, y). This is a constant that can be estimated 



Example:Image denoising using adaptive,local noise-reduction 
filtering

(a) Image corrupted by additive Gaussian 
noise of zero mean and a variance of 1000. 
(b) Result of arithmetic mean filtering. (c) 
Result of geometric mean filtering. (d) 
Result of adaptive noise-reduction 
filtering. All filters used were of size 7 ×
7. 



Adaptive Median Filter

• We use fellow notation:



Adaptive Median Filter

The adaptive median-filtering algorithm uses two processing levels, denoted level A and level B , 
at each point (x, y): 



Example:Image denoising using adaptive median filtering

(a) Image corrupted by salt-and-pepper noise with probabilities = = 0.25. (b) Result of filtering 
with a 7 × 7 median filter. (c) Result of adaptive median filtering with = 7. 



Periodic Noise Reduction Using Frequency  Domain Filtering 

• Periodic noise can be analyzed and filtered quite effectively 
using frequency domain techniques. The basic idea is that 
periodic noise appears as concentrated bursts of energy in the 
Fourier transform, at locations corresponding to the frequencies 
of the periodic interference. 



More on Notch Filtering

• Notch reject filter transfer functions are constructed as products of high-
pass filter transfer functions whose centers have been translated to the 
centers of the notches. The general form of a notch filter transfer function 
is :

where 𝐻!(𝑢, 𝑣) and 𝐻(!(𝑢, 𝑣) are high-pass filter transfer functions whose centers are at 
(𝑢!, 𝑣!) and (−𝑢!, −𝑣!), respectively. These centers are specified with respect to the 
center of the frequency rectangle, [floor( M/2), floor(N/2)], where, as usual, M and N are 
the number of rows and columns in the input image. 



More on Notch Filtering

• The distance computations for the filter transfer functions are given by: 

For example, the following is a Butterworth notch reject filter transfer function of order n 
with three notch pairs: 

and



More on Notch Filtering

Perspective plots of (a) ideal, (b) Gaussian, and (c) Butterworth notch reject 
filter transfer functions. 



Example:Image denoising (interference reduction) using notch filtering

(a) Image corrupted by sinusoidal 
interference. (b) Spectrum showing 
the bursts of energy caused by the 
interference. (The bursts were 
enlarged for display purposes.) (c) 
Notch filter (the radius of the circles 
is 2 pixels) used to eliminate the 
energy bursts. (The thin borders are 
not part of the data.) (d) Result of 
notch reject filtering.



Linear, Position-Invariant Degradations

• The expression:

• If H is position invariant, then:

which is called the superposition (or Fredholm) integral of the first kind. This expression is a 
fundamental result that is at the core of linear system theory. It states that if the response of 
H to an impulse is known, the response to any input 𝑓(𝛼, 𝛽) can be calculated using equation 
avove. In other words, a linear system H is characterized completely by its impulse response. 



Linear, Position-Invariant Degradations

• Then we have:

• In the presence of additive noise, if H is position invariant, the 
expression of the linear degradation model becomes:



Inverse Filtering

• The material in this section is our first step in studying restoration of 
images degraded by a degradation function H, which is given, or is 
obtained by a method such as those discussed in the previous section. The 
simplest approach to restoration is direct inverse filtering, where we 
compute an estimate, ,𝐹(𝑢, 𝑣), of the transform of the original image by 
dividing the transform of the degraded image, G(u, v), by the degradation 
transfer function: 



Inverse Filtering

• The division is elementwise. Substituting the G(u, v) yields: 

This is an interesting expression. It tells us that, even if we know the 
degradation function, we cannot recover the undegraded image [the inverse 
Fourier transform of F(u, v)] exactly because N(u, v) is not known. There is 
more bad news. If the degradation function has zero or very small values, 
then the ratio N(u, v)/H(u, v) could easily dominate the term F(u, v). In fact, 
this is frequently the case, as you will see shortly. 



Example:Image deblurring by inverse filtering

Restoring image using inverse 
filtering. (a) Result of using the full 
filter. (b) Result with H cut off 
outside a radius of 40. (c) Result with 
H cut off outside a radius of 70. (d) 
Result with H cut off outside a radius 
of 85. 



Minimum Mean Square Error (Wiener) Filtering

• The expression of error is:

• The minimum of the error function above is given in the frequency domain 
by the expression:



Minimum Mean Square Error (Wiener) Filtering

• The terms in equation above are as follows:



Example: Comparison of deblurring by inverse and Wiener filtering 

Comparison of inverse and Wiener filtering. (a) Result of full inverse filtering of Fig. 5.25(b) . (b) 
Radially limited inverse filter result. (c) Wiener filter result. 



Constrained Least Squares Filtering

• One way to reduce the effects of noise sensitivity, is to base optimality of 
restoration on a measure of smoothness, such as the second derivative of 
an image (our old friend, the Laplacian). To be meaningful, the restoration 
must be constrained by the parameters of the problems at hand. Thus, 
what is desired is to find the minimum of a criterion function, C, defined 
as: 

subject to the constraint 



Constrained Least Squares Filtering

• The frequency domain solution to this optimization problem is given by the 
expression:

where 𝛾 is a parameter that must be adjusted so that the constraint above is 
satisfied, and 𝑃(𝑢, 𝑣) is the Fourier transform of the function: 

We recognize this function as a Laplacian kernel. Note that the expression 
reduces to inverse filtering if 𝛾 = 0. 



Example: Comparison of deblurring by Wiener and constrained 
least squares filtering. 

Results of constrained least squares filtering. Compare (a), (b), and (c) with the Wiener filtering results above, 
respectively. 



Thank You!


