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Principle of CT Reconstruction

e Let us begin with an image of flat region
with a single object. Suppose that this image
1s a cross-section of a 3-D region of a human
body. Assume also that the background in the
1image represents soft, uniform tissue, while
the round object 1s a tumor, also uniform, but
with higher X-ray absorption characteristics.
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Principle of CT Reconstruction

e Suppose that we pass a thin, flat
beam of X-rays from left to right
(through the plane of the image), as
the image show, and assume that the
energy of the beam is absorbed more

by the object than by the background.
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Principle of CT Reconstruction

 We have no way of determining from
a single projection whether we are
dealing with a single object, or a
multitude of objects along the path of
the beam.

e The approach is to project the 1-D
signal back in the opposite direction
from which the beam came, as the
figure shows.
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by 90°, as in figure (a). Repeating
the procedure explained in the
previous paragraph yields a
backprojection image 1n the vertice
direction, as shows in figure (b).
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Principle of CT Reconstruction

e We continue the reconstruction by
adding this result to the previous
backprojection, resulting in figure
right
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Principle of CT Reconstruction

e We should be able to learn more
about the shape of the object in
question by taking more views in
the manner just described, as -
figure right shows. ,
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Principle of CT Reconstruction

 Figure right was formed from 32
backprojections. Note, however, that
while this reconstructed image 1s a
reasonably good approximation to the
shape of the original object, the image is
blurred by a “halo” effect.
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Principle of CT Reconstruction

e Backprojections of a planar region containing two objects

Figure left illustrates a region that
contains two objects with different
absorption properties (the larger object
has higher absorption).
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Principle of CT Reconstruction

e Backprojections of a planar region containing two objects

Reconstruction using
1, 2 backprojections
respectively.
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Principle of CT Reconstruction

e Backprojections of a planar region containing two objects

Reconstruction using 4, 32 and 64 backprojections respectively.
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Principles of X-RAY Computed Tomography (CT)

 The basic mathematical concepts required for CT

= The theoretical foundation of CT dates back to Johann Radon, a
mathematician from Vienna who derived a method in 1917 for projecting a
2-D object along parallel rays, as part of his work on line integrals (the
method now i1s referred to as the Radon transform, a topic we will discuss
shortly).

o Forty-five years later, Allan M. Cormack, a physicist at Tufts University,
partially “rediscovered” these concepts and applied them to CT.
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Principles of X-RAY Computed Tomography (CT)

e A straight line in Cartesian coordinates 2
y=ax+b b
! N
: _ 0
xcosfB +ysinf =p = > >
‘a\
 Projection along the line

400 400
g(pj,ek) = J j f(x,y)@(x cos 8, + ysin 0, — pj) dx dy
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Principles of X-RAY Computed Tomography (CT)

A
Y A point g(p;, 0;) in

° Geometry of . ¥| Q the projection
Complete projection, g(p, 6;), N7

parallel beam for a fixed angle — %

 Projection along
line with 6 and p;

R. C. Gonzalez and R. E. Woods, Digital Image Processing, Pearson, 2018.
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Principles of X-RAY Computed Tomography (CT)

y

e Radon Transform

Projection of f(x,y) along an arbitrary straight line in
Cartesian coordinates

R(f)=g(p,0) = j_ f_ f(x,y)0(xcos@ + ysinf —p)dxdy

« Discrete variables (x,y)

M-1 N—-1
R(f) = 39(p.0) = ) £(x,y)8(x cos 8 + ysin 6 — p)

x=0 y=0

;l)

0 r
R. C. Gonzalez and R. E. Woods, Digital Image Processing, Pearson, 2018.
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Backprojections

« Backprojected image from the Radon transform (sinogram)

fo,(x,¥) =g(p,0;) p=xcosb+ysinby

- jo . u[ 1

 Blurring: Halo effect
R. C. Gonzalez and R. E. Woods, Digital Image Processing, Pearson, 2018.
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Backprojections

 The Fourier-Slice Theorem
The 1-D Fourier transform of a projection 1s a slice of the 2-D Fourier

transform. y / :
+ A 2-D Fourier
w . - . t v f .
G(w,0) = f g(p’ Q)Q—JZﬂwpdp Projection ~ 1’;1(5;;?;1;1
— f f f(x, y)e—jZmU(x cos 8+y sin 0) dx dy Yo, J’),\ %0 8\ 9\
S AN N ,
= f f f(X; y)e—jZTL'(xa) cos §+yw sin e)dx dy NN 1-D Fourier
0 e e transform

= F(wcos 0 ,w sin )

R. C. Gonzalez and R. E. Woods, Digital Image Processing, Pearson, 2018.
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Filtered Backprojections

* Parallel-beam geometry

Ramp filter Band-limited ramp filter
+ 0o 4+ 0o
flx,y) = f f F(u, v)el2mWx+vy) gy dy
an + o0
= J G(w, 0)el2m(xcosO+ysinb),q., 40 g o e ot
= J (w,0)e’?™Pdw db /X
Frequency Frequency v VASpatial
domain domain domain
Ramp filter Hamming window Windowed ramp filter

R. C. Gonzalez and R. E. Woods, Digital Image Processing, Pearson, 2018.



.11 Information, and Network Sy

School of Life Sciences and Biotechnology

"'I Institute of Media, m’gj Bl 2 AR B

Filtered Backprojections

» Fan-beam geometry AN \/
0=p+a NN :

p=Dsina

L(p,0)

Center ray

 Backprojection formula
R. C. Gonzalez and R. E. Woods, Digital

1 2t T
f(x,y):zjo j_@s@+ysin091pd9
X Image Processing, Pearson, 2018.

g(p,0) =0for|p|>T s(p): the inverse Fourier transform of |w|

RV Conversion to polar
~ Ejo j_Tg(p’ 0)s(r cos(8 — ¢) — p)dp db coordinates (7, ¢)
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Filtered Backprojections

e Relate to a and

fr.d) = sm ~1(T/D)
1 21T
=§f ’ Dsina,a+ B)s(rcos(f+a—¢) —Dsina)D cosadadf
° p(a, B) N
¢ Maximum value of a needed to encompass a region of interest o<
« Introduce the angle o’ between the ray and center ray and the distance * ' \

R from the source to an arbitrary point

1 2T ~Q;m
f(r,p) = EJ f p(a,B)s(Rsin(a’ — a))D cosadadf
0 J-ap

rcos(f +a —¢) —Dsina = Rsin(a’ — a)

R. C. Gonzalez and R. E. Woods, Digital Image Processing, Pearson, 2018.
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Helical (Spiral) CT Reconstruction

 The patient advances at a constant rate through the scanner gantry while
the X-ray tube rotates continuously around the patient, tracing a spiral
path through the patient.

* Interpolate to achieve reconstruction

180-degree linear interpolation 360-degree linear interpolation

C. N. Nordan, “Helical CT & Lung Cancer,” 2011. [Online] Available: http://www.personal.psu.edu/afr3/blogs/SIOW/2011/12/helical-ct-lung-cancer.html
N. Keat, “Helical and multi-sclie principles,” 2005. [Online] Available: http://www.impactscan.org/slides/impactcourse/helical and multi-slice principles/index.html
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Multi-Slice CT Reconstruction

e Linear interpolation:
Interpolate projections from the same scan angle
o Z-filtering
Image backprojected along oblique planes for Z-axis filtering
« 3-D backprojections
i

‘L IL '!:_
N -1”? - )
' “ ’ \\\\ ‘C._;ptimised‘ksblique ifﬁ%ges Overlapping Axial images
l reconstructions

N. Keat, “Helical and multi-sclie principles,” 2005. [Online] Available: http://www.impactscan.org/slides/impactcourse/helical and multi-slice principles/index.html
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L.ow-Dose CT Reconstruction

 CT reconstruction from incomplete and noisy data
e TV regularization /() = [||Vf]l,dx

A
min ||Pf - ylIz +J(f) s.t.f;=0,Vi
 Sparse representation
min (Pf = y)"S7HPF — ) + Q. IEf = Daill3 + Aillailo)
g, l

* Deep learning
 Relation to compressed sensing

Z. Tian, X. Jia, K. Yuan, T. Pan and S. B. Jiang, “Low dose CT reconstruction via edge-preserving total variation regularization,” Physics in Medicine & Biology, 2011, 56(18): 5949-5967
Q. Xu, X. Mou, L. Zhang, J. Hsieh, and G. Wang, “Low-dose X-ray CT reconstruction via dictionary learning,” IEEE Transactions on Medical Imaging, 2012, 31(9): 1682-1697.
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Thank You!



