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Principle of CT Reconstruction

• Let us begin with an image of flat region 
with a single object. Suppose that this image 
is a cross-section of a 3-D region of a human 
body. Assume also that the background in the 
image represents soft, uniform tissue, while 
the round object is a tumor, also uniform, but 
with higher X-ray absorption characteristics. 



Principle of CT Reconstruction

• Suppose that we pass a thin, flat 
beam of X-rays from left to right 
(through the plane of the image), as 
the image show, and assume that the 
energy of the beam is absorbed more 
by the object than by the background.



Principle of CT Reconstruction

• We have no way of determining from 
a single projection whether we are 
dealing with a single object, or a 
multitude of objects along the path of 
the beam. 
• The approach is to project the 1-D 

signal back in the opposite direction 
from which the beam came, as the 
figure shows. 



Principle of CT Reconstruction

• Next, suppose that we rotate the 
position of the source-detector pair 
by 90°, as in figure (a). Repeating 
the procedure explained in the 
previous paragraph yields a 
backprojection image in the vertical 
direction, as shows in figure (b).

(a) (b)



Principle of CT Reconstruction

• We continue the reconstruction by 
adding this result to the previous 
backprojection, resulting in figure 
right



Principle of CT Reconstruction

• We should be able to learn more 
about the shape of the object in 
question by taking more views in 
the manner just described, as 
figure right shows.



Principle of CT Reconstruction

• Figure right was formed from 32 
backprojections. Note, however, that 
while this reconstructed image is a 
reasonably good approximation to the 
shape of the original object, the image is 
blurred by a “halo” effect.



Principle of CT Reconstruction

• Backprojections of a planar region containing two objects 

Figure left illustrates a region that 
contains two objects with different 
absorption properties (the larger object 
has higher absorption). 



Principle of CT Reconstruction

• Backprojections of a planar region containing two objects 
Reconstruction using 
1, 2 backprojections
respectively. 



Principle of CT Reconstruction

• Backprojections of a planar region containing two objects 

Reconstruction using 4, 32 and 64 backprojections respectively. 



Principles of X-RAY Computed Tomography (CT)

• The basic mathematical concepts required for CT
▫ The theoretical foundation of CT dates back to Johann Radon, a 

mathematician from Vienna who derived a method in 1917 for projecting a 
2-D object along parallel rays, as part of his work on line integrals (the 
method now is referred to as the Radon transform, a topic we will discuss 
shortly). 
▫ Forty-five years later, Allan M. Cormack, a physicist at Tufts University, 

partially “rediscovered” these concepts and applied them to CT. 



Principles of X-RAY Computed Tomography (CT)

• A straight line in Cartesian coordinates

• Projection along the line
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Principles of X-RAY Computed Tomography (CT)

• Geometry of 
parallel beam

• Projection along 
line with 𝜃! and 𝜌"

R. C. Gonzalez and R. E. Woods, Digital Image Processing, Pearson, 2018. 



Principles of X-RAY Computed Tomography (CT)

• Radon Transform
Projection of 𝑓(𝑥, 𝑦) along an arbitrary straight line in 

Cartesian coordinates

• Discrete variables (𝑥, 𝑦)
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R. C. Gonzalez and R. E. Woods, Digital Image Processing, Pearson, 2018. 



Backprojections

• Backprojected image from the Radon transform (sinogram)

• Blurring: Halo effect
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R. C. Gonzalez and R. E. Woods, Digital Image Processing, Pearson, 2018. 



Backprojections

• The Fourier-Slice Theorem
The 1-D Fourier transform of a projection is a slice of the 2-D Fourier 

transform.

R. C. Gonzalez and R. E. Woods, Digital Image Processing, Pearson, 2018. 
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Filtered Backprojections

• Parallel-beam geometry
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Ramp filter

Ramp filter Band-limited ramp filter

Hamming window Windowed ramp filter

R. C. Gonzalez and R. E. Woods, Digital Image Processing, Pearson, 2018. 



Filtered Backprojections

• Fan-beam geometry

• Backprojection formula
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Conversion to polar 
coordinates (𝑟, 𝜙)

R. C. Gonzalez and R. E. Woods, Digital 
Image Processing, Pearson, 2018. 



Filtered Backprojections

• Relate to 𝛼 and 𝛽

• Maximum value of 𝛼 needed to encompass a region of interest
• Introduce the angle 𝛼′ between the ray and center ray and the distance 
𝑅 from the source to an arbitrary point 
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R. C. Gonzalez and R. E. Woods, Digital Image Processing, Pearson, 2018. 



Helical (Spiral) CT Reconstruction

• The patient advances at a constant rate through the scanner gantry while 
the X-ray tube rotates continuously around the patient, tracing a spiral 
path through the patient.
• Interpolate to achieve reconstruction

180-degree linear interpolation 360-degree linear interpolation
C. N. Nordan, “Helical CT & Lung Cancer,” 2011. [Online] Available: http://www.personal.psu.edu/afr3/blogs/SIOW/2011/12/helical-ct-lung-cancer.html
N. Keat, “Helical and multi-sclie principles,” 2005. [Online] Available: http://www.impactscan.org/slides/impactcourse/helical_and_multi-slice_principles/index.html



Multi-Slice CT Reconstruction

• Linear interpolation: 
Interpolate projections from the same scan angle  
• Z-filtering

Image backprojected along oblique planes for Z-axis filtering
• 3-D backprojections

N. Keat, “Helical and multi-sclie principles,” 2005. [Online] Available: http://www.impactscan.org/slides/impactcourse/helical_and_multi-slice_principles/index.html



Low-Dose CT Reconstruction

• CT reconstruction from incomplete and noisy data
• TV regularization 𝐽 𝑓 = ∫ ∇𝑓 #𝑑𝑥

• Sparse representation

• Deep learning
• Relation to compressed sensing
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Z. Tian, X. Jia, K. Yuan, T. Pan and S. B. Jiang, “Low dose CT reconstruction via edge-preserving total variation regularization,” Physics in Medicine & Biology, 2011, 56(18): 5949-5967
Q. Xu, X. Mou, L. Zhang, J. Hsieh, and G. Wang, “Low-dose X-ray CT reconstruction via dictionary learning,” IEEE Transactions on Medical Imaging, 2012, 31(9): 1682-1697.
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