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Today’s Topic

• Edge Detection

• Image Segmentation



Introduction & Overview

• Purpose
▫ In medical image processing, as well as many other applications of 

image processing, it is necessary to identify the boundary between 
the objects in the image and separate the objects from each other.

• Approaches
▫ Differences and dissimilarities of pixels in different regions
▫ Similarities of the pixels within each region



Edge Detection

• Sobel Edge Detection
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Edge Detection

• Example:

(a) Original 
image and 
(b) edge-
enhanced 
image  



Edge Detection
• Example:

(a) Original image and (b) edge-detected image  (Courtesy of Andre D’Avila,  MD, Heart Institute (InCor), University 
of Sao Paulo, Medical School, Sao Paulo, Brazil ) 



Edge Detection

• Laplacian of Gaussian (LoG) Edge Detection
▫ This edge detection technique, as the name may suggest, is a 

straightforward combination of a Laplacian operator and a Gaussian  
smoothing filter.   

Schematic diagram of edge detection using Laplacian of Gaussian  



Example

(a) Original image,
(b) edge-detected image using Sobel, 
and 
(c) edge-detected  image using 
Laplacian of Gaussian  
(Courtesy of Andre D’Avila, MD, 
Heart Institute (InCor),  University of 
Sao Paulo, Medical School, Sao 
Paulo, Brazil ) 



Canny Edge Detection

• Four fundamental steps:



Canny Edge Detection

• Details of the aforementioned steps:
▫ Step 1

𝐼(𝑖, 𝑗): the input image
𝐺(𝑖, 𝑗, 𝜎): Gaussian smoothing filter where σ is the spread of the Gaussian controlling the degree 
of smoothing. 
𝑆(𝑖, 𝑗): the output of the smoothing filter.



Canny Edge Detection

• Details of the aforementioned steps:
▫ Step 2

The magnitude 𝑀(𝑖, 𝑗) and orientation q(𝑖, 𝑗) of the gradient vector are given as follows:

𝑃(𝑖, 𝑗) and 𝑄(𝑖, 𝑗) are the horizontal and vertical partial (directional) derivatives, respectively. They 
are produced with the gradient of the smoothed image.



Canny Edge Detection

• Details of the aforementioned steps:
▫ Step 3

▫ Step 4
After applying non-maxima suppression, there are often many false edge  
fragments in the image. To discard these false edge fragments, one can apply 
thresholds to 𝑁 𝑖, 𝑗 to discard false edge fragments.   

In Canny method, an edge point is defined as a point whose gradient’s magnitude 
identifies a local maximum in the direction of the gradient.The process of 
searching for such pixels, which is often called “non-maxima suppression,” 
thresholds the gradient magnitude to find potential edge pixels.



Canny Edge Detection
• Examples:

(a) Original image and (b) Canny edge-detected image  (Courtesy of Andre  D’Avila, MD, Heart Institute 
(InCor), University of Sao Paulo, Medical School, Sao Paulo,  Brazil ).



Image Segmentation

• In almost all biomedical image processing applications, it is 
necessary to separate different regions and objects in an image.
In fact, image segmentation is considered as the most sensitive 
step in many medial image processing applications.



Image Segmentation

• Categories
▫ Based on the discontinuity of the points across two regions.
� Detecting gray-level discontinuities (points, lines and edges)
� Thresholding

▫ Based on the similarities among the points in the same region.



Image Segmentation

• Point Detection 
▫ Intention: To detect the isolated points in an image.

▫ The main factor that helps us detect isolated points is the 
difference between them and their neighboring pixels gray levels. 
This suggests using masks.

▫ Supposes that the value obtained by applying mask is 𝐹, then a 
point is marked as an isolated point if 𝐹 ≥ 𝑇 with the prespecified 
threshold 𝑇.



Image Segmentation

• Point Detection 
▫ Example

Mask for point detection  (Courtesy of David Malin Images, Anglo-Australian  Observatory 
[AAO], Epping, New South Wales, Australia  http://www davidmalin com)  



Image Segmentation

• Point Detection 
▫ Example

(a) Original image 
and 
(b) image after 
point detection  



Image Segmentation

• Line Detection 
▫ Magnifying and detecting lines with any prespecified angles with 

variety of line detection masks.
▫ Example

Line detection masks. From left to right: horizontal lines, vertical lines, rising lines with
45° angle, and falling lines with −45° angle  



Image Segmentation

• Line Detection 
▫ Example (a) Original image, 

(b) image after horizontal line 
detection, 
(c) image after  vertical line 
detection, and 
(d) image after 45° line detection  
(Courtesy of Andre D’Avila,  
MD, Heart Institute (InCor), 
University of Sao Paulo, Medical 
School, Sao Paulo, Brazil ) 



Image Segmentation

• Region and Object Segmentation
▫ Distinguishing and detecting regions representing different objects 

are particularly important for biomedical image processing,
because in a typical task of medical image analysis, one needs to 
detect regions representing objects, such as tumors, from 
background.



Image Segmentation

• Luminance Thresholding
▫ The pixels in the objects of interest have gray levels that are either 

greater or smaller than the gray levels of the background pixels.

(a) A synthetic cell image that contains 
cells that are much darker than the bright 
background. (b) image histogram  



Image Segmentation

• Luminance Thresholding
▫ While in the synthetic images, such as the one shown in figure 

above, the separation process is rather easy. In real biomedical 
images, however, the gray-level separation process is much more 
complicated. Both the background and the interested object often 
occupy gray-level ranges that overlap each other.

▫ A typical solution for these problem is dividing the original image 
into some sub-images.  



Image Segmentation

• Region Growing
▫ Methods above belong to the first category of segmentation 

algorithms, while region growing belongs to the second category.

▫ Segmentation often starts by selecting a seed pixel for each region 
in the image in region growing methods. Seed pixels are often 
chosen close to the center of the region or object.

▫ One of the most important factors are selecting a suitable similarity 
criterion.



Image Segmentation

• Region Growing
▫ Example for criterion: In this example, we append to each seed all 

the pixels that (a) are 8-connected to that seed, and (b) are 
“similar” to it. Using absolute intensity differences as a measure of 
similarity, our predicate applied at each location (𝑥, 𝑦) is:



Image Segmentation

• Region Growing
▫ Example

(a) Subimage with only the 
seed points and 
(b) segmented subimage 
using  region growing 
method  



Image Segmentation
(a) X-ray image of a defective weld. 
(b) Histogram. 
(c) Initial seed image. 
(d) Final seed image (the points were enlarged 
for clarity). 
(e) Absolute value of the difference between 
the seed value (255) and (a). 
(f) Histogram of (e). 
(g) Difference image thresholded using dual 
thresholds. 
(h) Difference image thresholded with the 
smallest of the dual thresholds. 
(i) Segmentation result obtained by region 
growing. 



Image Segmentation

• Region Splitting and Merging
▫ Unlike region growing algorithm, an alternative is to subdivide an 

image initially into a set of disjoint regions and then merge and/or 
split the regions in an attempt to satisfy the conditions of 
segmentation 



Image Segmentation

• Quad-Trees

(a) Partitioned image. (b) Corresponding quadtree. R represents the entire image region. 



Image Segmentation

• Quad-Trees
▫ The preceding discussion can be summarized by the following 

procedure in which, at any step, we
1) Split into four disjoint quadrants any region 𝑅! for which 𝑄 𝑅! =

𝑓𝑎𝑙𝑠𝑒.
2) When no further splitting is possible, merge any adjacent regions 𝑅!

and 𝑅" for which 𝑄 𝑅# ∪ 𝑅" = 𝑡𝑟𝑢𝑒. 
3) Stop when no further merging is possible. 



Image Segmentation

• Example for quad-trees algorithm

Lan H, Chen L, Hu W. An approach on liver medical image segmentation based on quad tree[C]//2011 International Conference on Multimedia Technology. IEEE, 
2011: 152-154.



Image Segmentation
(a) Image of the Cygnus Loop supernova, taken in the X-
ray band by NASA’s Hubble Telescope. 
(b) through (d): Results of limiting the smallest allowed 
quad-region to be of sizes of 32×32, 16×16, and 8×8 
pixels, respectively.
The objective of this example is to segment (extract from 
the image) the “ring” of less dense matter surrounding the 
dense inner region. 

The criterion:



Image Segmentation

• Clustering and Superpixels

▫ K-means Clustering

▫ Superpixels

▫ Simple Linear Iterative Clustering (SLIC)



Image Segmentation

• K-Means Clustering
▫ The basic idea behind the clustering approach is to partition a set 𝑄

of observations into a specified number 𝑘 of clusters.
▫ In K-means clustering, each observation is assigned to the cluster 

with the nearest mean and each mean is called the prototype of its 
cluster. 
▫ A K-means algorithm is an iterative procedure that successively 

refines the means until convergence is achieved. 



Image Segmentation

• K-Means Clustering
▫ The objective of K-means clustering is to partition the set of 𝑄

vector observations {𝑧!, 𝑧", … , 𝑧#} into 𝑘 (𝑘 ≤ 𝑄 ) disjoint cluster sets 
C = {𝐶!, 𝐶", … , 𝐶$}. The following criterion of optimality is satisfied:

𝑧 = [𝑧! 𝑧"⋯𝑧%] is the vector observation, 𝑚& is the mean vector (or 
centroid) of the samples in set 𝐶& and ⋅ is the vector norm. 
▫ NP-hard problem to find the minimum



• K-Means Clustering
▫ A “standard” K-means algorithm: Given a set {𝑧!, 𝑧", … , 𝑧#} of vector 

observation and a specified value of k
� Step 1: Initialize the algorithm

Specify an initial set of means 𝑚! 1 , 𝑖 = 1,2, … , 𝑘.

� Step 2: Assign samples to clusters
Assign each sample to the cluster set whose mean is the closest: 

Image Segmentation



Image Segmentation

• K-Means Clustering
� Step 3: Update the cluster centers (means)

where 𝐶! is the number of samples in cluster set 𝐶!. 
� Step 4: Test for completion 

Compute the Euclidean norms of the differences between the mean 
vectors in the current and previous steps. Compute the residual error 𝐸
as the sum of the 𝑘 norms. Stop if 𝐸 ≤ 𝑇, where 𝑇 is a specified 
nonnegative threshold. Else, go back to Step 2. 



Image Segmentation

• Examples for K-Means Clustering:

(a) Image of 688×688 
pixels. 
(b) Image segmented 
using the K-means 
algorithm with 𝑘 = 3. 



Image Segmentation

• Superpixels
▫ The idea behind superpixels is to replace the standard pixel grid by 

grouping pixels into primitive regions that are more perceptually 
meaningful than individual pixels. 

▫ The objectives are to lessen computational load, and to improve 
the performance of segmentation algorithms by reducing irrelevant 
detail.



Image Segmentation

• Superpixels

(a) Image of size 600×480 (480,000) pixels. (b) Image composed of 4,000 superpixels (the boundaries 
between superpixels (in white) are superimposed on the superpixel image for reference—the boundaries 
are not part of the data). (c) Superpixel image.



Image Segmentation
• Superpixels
▫ It is possible to reduce the difference between a superpixel image and its 

parent image, and still achieve significant savings in storage and computation 
time. 

(a) Original image. (b) Image composed of 40,000 superpixels. (c) Difference between (a) and (b). 



Image Segmentation
• Superpixels

Results of severely decreasing 
the number of superpixels. 
Top row: Results of using 
1,000, 500, and 250 
superpixels in the 
representation. As before, the 
boundaries between 
superpixels are superimposed 
on the images for reference. 
Bottom row: Superpixel
images. 



Image Segmentation

• Requirements for Superpixels Algorithm
▫ Adherence to boundaries 

▫ Preservations of topological properties 

▫ Computational efficiency. 



Image Segmentation

• Simple Linear Iterative Clustering (SLIC)
▫ Simple linear iterative clustering (SLIC) is a modification of the K-

means algorithm.
▫ SLIC observations typically use (but are not limited to) 5-dimensional 

vectors containing three color components 𝑟, 𝑔, 𝑏 and two spatial 
coordinates 𝑥, 𝑦. 

𝑧 = 𝑟 𝑔 𝑏 𝑥 𝑦 '



Image Segmentation

• SLIC Superpixels Algorithm
� Step 1: Initialize the algorithm 
Compute the initial superpixel cluster centers, 

by sampling the image at regular grid steps 𝑠. Move the cluster centers to 
the lowest gradient position in a 3 × 3 neighborhood. For each pixel 𝑝, in 
the image, set a label 𝐿 𝑝 = −1 and a distance 𝑑 𝑝 = ∞.



Image Segmentation

• SLIC Superpixels Algorithm
� Step 2: Assign samples to cluster centers 

For each cluster center 𝑚!, 𝑖 = 1,2, … , 𝑛$%, compute the distance 𝐷!(𝑝)
between 𝑚! and each pixel 𝑝 in a 2𝑠×2𝑠 neighborhood of 𝑚!. Then, for 
each 𝑝 and 𝑖 = 1,2, … , 𝑛$%,if 𝐷! < 𝑑(𝑝), let 𝑑 𝑝 = 𝐷!, and 𝐿 𝑝 = 𝑖. 

� Step 3: Update the cluster centers 
Let 𝐶! denote the set of pixels in the image with label 𝐿 𝑝 = 𝑖. Update 𝑚!

where 𝐶! is the number of pixels in set 𝐶!.



Image Segmentation

• SLIC Superpixels Algorithm
� Step 4: Test for convergence

Compute the Euclidean norms of the differences between the mean 
vectors in the current and previous steps. Compute the residual error 𝐸, 
as the sum of the 𝑛$% norms. If 𝐸 < 𝑇, where 𝑇 is a specified nonnegative 
threshold, go to Step 5. Else, go back to Step 2.

� Step 5: Post-process the superpixel regions
Replace all the superpixels in each region 𝐶! by their average value 𝑚!. 

▫ Note in Step 5 that superpixels end up as contiguous regions of 
constant value



Image Segmentation

• SLIC Superpixels Algorithm
▫ Specifying the Distance Measure

� We then define 𝐷 as the composite distance 

� where 𝑑&' and 𝑑$' are the maximum expected values of 𝑑& and 𝑑$. 



Image Segmentation
• Example for SLIC

(a) Image of 533×566 (301,678) pixels. 
(b) Image segmented using the k-means 
algorithm. 
(c) 100-element superpixel image 
showing boundaries for reference. 
(d) Same image without boundaries. 
(e) Superpixel image (d) segmented 
using the k-means algorithm. 



Image Segmentation
• Segmentation using Morphological Watersheds
▫ Visualize an image in 3D:spatial coordinates and intensity
▫ In such a topographic interpretation, there are 3 types of points:
� Points belonging to a regional minimum
� Points at which a drop of water would fall to a single minimum. 
� Points at which a drop of water would be equally likely to fall to more 

than one minimum.



Image Segmentation
• Segmentation using Morphological Watersheds



Image Segmentation
• Segmentation using Morphological Watersheds
▫ The objective is to find watershed lines
▫ The idea is simple: 

� Suppose that a hole is punched in each regional minimum and that the entire 
topography is flooded from below by letting water rise through the holes at a uniform 
rate.

� When rising water in distinct catchment basins is about the merge, a dam is built to 
prevent merging. These dam boundaries correspond to the watershed lines.  



Image Segmentation
• Segmentation using Morphological Watersheds



Image Segmentation
• Segmentation using Morphological Watersheds、
▫ Start with all pixels with the lowest possible value.
� These form the basis for initial watersheds
▫ For each intensity level k:
� For each group of pixels of intensity k
� If adjacent to exactly one existing region, add these pixels to that region
� Else if adjacent to more than one existing regions, mark as boundary
� Else start a new region



Image Segmentation
• Segmentation using Morphological Watersheds、
▫ Due to noise and other local irregularities of the gradient, 

oversegmentation might occur.



Image Segmentation
• Segmentation using Morphological Watersheds、
▫ A solution is to limit the number of regional minima. Use markers to 

specify the only allowed regional minima. 



Image Segmentation
• Segmentation using Morphological Watersheds、
▫ A solution is to limit the number of regional minima. Use markers to 

specify the only allowed regional minima. 



Image Segmentation

• Image Segmentation from a “modeling” point of view
▫ Deformable models are physically based models of deformable 

curves, surfaces, and solids used traditionally in computer graphics.
▫ Active contours (also called evolving fronts or evolving interfaces), 

are deformable models confined to the plane. 
▫ Work on active contours related specifically to image segmentation 

evolved along two different paths:
� Snakes (Kass, Witkin, and Terzopoulus [1988])
� Level sets (Osher and Sethian [1988])



Image Segmentation

• Snakes
▫ Snakes are parametric representations of active contours.

▫ The fundamental snake equation

where the term F(c(s)) is a 2-D vector containing the force at points along the 
snake curve, c. This equation indicates that finding the snake contour can be 
interpreted as a process of balancing internal (elastic and bending) forces against 
an external force. 



Image Segmentation

• Snakes
▫ Iterative Solution of the Snake Equation

These two equations constitute the iterative form of the snake equation. They 
have reduced the problem of finding a segmentation snake to solving two 
straightforward iterative equations—a trivial task, especially in a matrix-oriented 
language, such as MATLAB.



Image Segmentation

• Snakes
▫ External Force Based on the Magnitude of the Image Gradient 

(MOG) 
� The external (image) energy is defined as:

� Then, the force corresponding to 𝐸!'()*(𝑥, 𝑦) is obtained by:



Image Segmentation

• Snakes
▫ External Force Based on the Magnitude of the Image Gradient 

(MOG) 
� If needed, the force components can be normalized as follows: 

Where 

is the vector norm, and is a small constant used to prevent division by zero. 
This normalization helps in the selection of parameter , especially when 
experimenting with other snake variables. 



Image Segmentation

• Illustration of how a snakes transitions from one time step to the 
next. 

Only two corresponding snake 
points are shown for clarity. The 
snake consists of K such points, 
each influenced by a different 
component of the external force. 



Image Segmentation

• Examples

(a) Image and initial snake (the 
snake points are enclosed by small 
circles to make them easier to see). 
(b) Result after 10 iterations of the 
solution with𝛼=0.5, 𝛽=0, and 
𝛾=0.6 . Note how the snake is 
beginning to become smooth. (c) 
through (f) Results after 50, 100, 
150, and 200 iterations, 
respectively. 



(a) Edge map used to 
generate the results in 
figure above. (b) Edge 
map with only the MOG 
filtered and then 
thresholded. (c) Result 
after 200 iterations using 
the forces based on (a). 
(d) Result after 200 
iterations using the forces 
based on (b). The initial 
snake is shown in figure 
above (a).



(e) Edge map with the 
image filtered and MOG 
thresholded (but not 
filtered). (f) Edge map 
with no filtering and the 
MOG thresholded. (g) 
Result after 200 iterations 
using the forces based on 
(e). (h) Result after 200 
iterations using the forces 
based on (f). The initial 
snake. 



(e) Edge map with the 
image filtered and MOG 
thresholded (but not 
filtered). (f) Edge map 
with no filtering and the 
MOG thresholded. (g) 
Result after 200 iterations 
using the forces based on 
(e). (h) Result after 200 
iterations using the forces 
based on (f). The initial 
snake. 



(a) Edge map. (b) Force field obtained using the edge map (a). All the arrows are of the same 
length because each element of the force field was normalized. 

(b)(a)



Image Segmentation

• Segmentation using Level Sets
▫ Level sets in our context are sets of points of a 2-D curve formed by 

the intersection of a plane and a 3-D surface. 
▫ Unlike the parametric representation used for snakes, level sets are 

based on implicit representations. An important aspect of this 
approach is that it can adapt to changing topology during curve 
evolution. 



Image Segmentation

• The implicitly representation of a 2-D contour
▫ A 2-D contour can be defined as the intersection of a plane and a 3-

D surface. 



Image Segmentation

• Level Sets
▫ The set of points in the intersection just mentioned is called a level set, 

and 𝜙 is usually referred to as a level set function.
▫ When dealing with two variables, the level set reduces to a level set 

curve C which we define as:

▫ Because the level set curves with which we work in this chapter are 
closed, it follows that (,)satisfies the following conditions for an arbitrary 
point (x, y): 



Illustration of how level sets are used for image segmentation conceptually. 

(a) Conceptual image of a dry grass 
field containing three lakes. The point 
represents an initial fire. (b) Fire front 
expanding uniformly at some later time. 
(c) The fire front encounters a lake 
shore, causing it to burn around the 
edge of the lake. (d) and (e) Results 
after further burning. (f) Result after the 
fire has completely burned out. This 
simple concept is the foundation of 
interface boundary evolution based on 
level sets. 



Image Segmentation
• Level Set Equation

▫ The solution we are seeking is the zero level set of at steady state 
To apply this equation to image segmentation, we: 
1) Specify a suitable initial form for 𝜙;
2) Formulate F as a scalar field containing properties of interest in 

segmentation; 
3) Solve the level set equation to find a 𝜙 that satisfies equation above; 
4) Extract the segmentation contour as the zero level set of 𝜙.



Image Segmentation
• Discrete (Iterative) Solution of the Level Set Equation

• This is the iterative implementation used to find a solution to 
the level set equation. As before, this expression properly 
chooses only one of the terms,                      ,depending on 
whether F> 0 or F< 0 is true, respectively. 



Image Segmentation
• Curvature
▫ As we mentioned earlier, active contours often are interpreted as 

evolving fronts. In practice, fields are not perfectly uniform, and 
other factors such as wind currents and moisture affect how such a 
fire front evolves. 
▫ The curvature for implicit functions (such as the level set functions 

in this chapter) is defined as the divergence of the unit normal



Image Segmentation
• Curvature
▫ Equation above can be written equivalently as:

where, for example, 𝜙4 =
56
54
, 𝜙44 =

5!6
54!

, 𝜙47 =
56
54

7
𝑎𝑛𝑑 𝜙48 =

5!6
5458

.

If is a signed distance function (see the next section), then ǁ∇𝜙ǁ = 1,and we can write the 
equation as: 



Image Segmentation

• Specifying, Initializing, and Reinitializing Level Set Functions 
▫ The first step in implementing the iterative solution is to specify a 

form and initial value of the level set function .In theory, a level 
set function can be arbitrarily specified, provided that its zero level 
corresponds to the initially-specified contour. In practice, solving 
the level set equation requires iteration, which definitely is 
affected by the form selected for 𝜙. 
▫ Let D(x, y) denote the Euclidean distance from an arbitrary point 

(x, y) on the plane to the closest point (𝑥(, 𝑦() on the boundary Ω: 



Image Segmentation

• Specifying, Initializing, and Reinitializing Level Set Functions 
▫ where 𝑥(, 𝑦( ∈ Ω). A class of functions used frequently for 𝜙 are 

signed distance functions, defined as:

▫ The fact that the value of 𝜙(𝑥, 𝑦) for any point (x, y) not on the 
interface is equal to the shortest distance from (x, y) to the 
interface implies that:





Examples:

(a) An arbitrarily specified, initial zero level set (interface) function. (b) Resulting signed distance function obtained 
with Δ = 0.5and 100 iterations of Eq. (11-92) , starting with equal to the interface in (a). (c) Level set function viewed 
from above. (Figures (b) and (c) are not viewed from the same azimuth angle—(b) is viewed from an angle that 
shows the most detail in the 3-D plot.) 


