Cross-Validation

- Summary
 - *K*-fold cross-validation: Training set to fit the model, Validation set to validate the model
 - Independent test set
 - Commonly 5-fold/10-fold cross-validation

- Motivation
 - If we have enough data, we would set aside a validation set and use it to assess the performance of our prediction model.
 - *K*-fold cross-validation uses part of the available data to fit the model, and a different part to test it.

1	2	3	4	5
Train	Train	Validation	Train	Train

Cross-Validation

- Details:
 - The cross-validation estimate of prediction error:

$$\operatorname{CV}(\hat{f}) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}^{-\kappa(i)}(x_i))$$

Given a set of models f(x, α) indexed by a tuning parameter α, denote by f^{-k}(x, α) the α-th model fit with the kth part of the data removed. Then for this set of models we define:

$$CV(\hat{f},\alpha) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}^{-\kappa(i)}(x_i, \alpha)).$$

Cross-Validation

- What quantity *K*-fold cross-validation estimates?
 - It estimates the expected error or the conditional error.
 - □ *K*=5?
 - K=N?
- What value should we choose for K?
 - How to balance the variance and bias of Err estimates.
 - □ *K*=5?
 - *K*=*N*?

Cross-Validation

Hypothetical learning curve for a classifier on a given task: a plot of 1 - Err versus the size of the training set N. With a dataset of 200 observations, 5-fold cross-validation would use training sets of size 160, which would behave much like the full set. However, with a dataset of 50 observations five-fold cross-validation would use training sets of size 40, and this would result in a considerable overestimate of prediction error.

Cross-Validation

Prediction error (orange) and tenfold cross-validation curve (blue) estimated from a single training set, from the scenario in two-class classification with linear model.

Generalized Cross-Validation

- In certain special problems, CV can be done quickly.
- For linear fitting under squared-error loss:
 - A linear fitting method is one for which we can write:

$$\hat{\mathbf{y}} = \mathbf{S}\mathbf{y}.$$

Now for many linear fitting methods,

$$\frac{1}{N}\sum_{i=1}^{N}[y_i - \hat{f}^{-i}(x_i)]^2 = \frac{1}{N}\sum_{i=1}^{N}\left[\frac{y_i - \hat{f}(x_i)}{1 - S_{ii}}\right]^2,$$

• where S_{ii} is the *i*-th diagonal element of **S**

Generalized Cross-Validation

- For linear fitting under squared-error loss:
 - The GCV approximation is:

$$\operatorname{GCV}(\hat{f}) = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{y_i - \hat{f}(x_i)}{1 - \operatorname{trace}(\mathbf{S})/N} \right]^2$$

- The quantity trace(S) is the effective number of parameters
- GCV can have a computational advantage in some settings, where the trace of **S** can be computed more easily than the individual elements S_{ii} .

- Consider a classification problem with a large number of predictors, a typical strategy for analysis might be as follows:
 - Screen the predictors: find a subset of "good" predictors that show fairly strong (univariate) correlation with the class labels
 - Using just this subset of predictors, build a multivariate classifier.
 - Use cross-validation to estimate the unknown tuning parameters and to estimate the prediction error of the final model.

- Consider a scenario:
 - N = 50 samples in two equal-sized classes, and p = 5000 quantitative predictors (standard Gaussian) that are independent of the class labels. The true (test) error rate of any classifier is 50%.
 - We carried out the above recipe, choosing in step(1) the 100 predictors having highest correlation with the class labels,
 - Then using a 1-nearest neighbor classifier, based on just these 100 predictors, in step (2).
 - Over 50 simulations from this setting, the average CV error rate was 3%.
 This is far lower than the true error rate of 50%.

- What's the problem?
 - The predictors have an unfair advantage, as they were chosen in step (1) on the basis of all of the samples.
 - Leaving samples out after the variables have been selected does not correctly mimic the application of the classifier to a completely independent test set, since these predictors "have already seen" the left out samples.

- The correct way to carry out cross-validation in this example:
 - Divide the samples into *K* cross-validation folds (groups) at random.
 - For each fold k = 1, 2, ..., K
 - Find a subset of "good" predictors that show fairly strong (univariate) correlation with the class labels, using all of the samples except those in fold k.
 - Using just this subset of predictors, build a multivariate classifier, using all of the samples except those in fold k.
 - Use the classifier to predict the class labels for the samples in fold k.

The Wrong and Right Way to Do Cross-validation

Correlations of Selected Predictors with Outcome

Correlations of Selected Predictors with Outcome

Cross-validation the wrong and right way: histograms shows the correlation of class labels, in 10 randomly chosen samples, with the 100 predictors chosen using the incorrect (upper red) and correct (lower green) versions of crossvalidation.

Does Cross-Validation Really Work?

- Consider a scenario with N = 20 samples in two equal-sized classes, and p = 500 quantitative predictors that are independent of the class labels.
- Consider a simple univariate classifier: a single split that minimizes the misclassification error (a "stump").
- A simple argument suggests that cross-validation will not work properly in this setting:
 - Fitting to the entire training set, we will find a predictor that splits the data very well. If we do 5-fold cross-validation, this same predictor should split any 4/5ths and 1/5th of the data well too, and hence its cross-validation error will be small (much less than 50%.) Thus CV does not give an accurate estimate of error.

Does Cross-Validation Really Work?

Left: The number of errors made by individual stump classifiers on the full training set.

Right: The errors made by individual stumps trained on a random split of the dataset into 4/5ths and tested on the remaining 1/5. The best performers are depicted by colored dots in each panel.

Does Cross-Validation Really Work?

Left: The effect of re-estimating the split point in each fold: the colored points correspond to the four samples in the 1/5th validation set. The split point derived from the full dataset classifies all four samples correctly, but when the split point is re-estimated on the 4/5ths data (as it should be), it commits two errors on the four validation samples. Right: The overall result of fivefold cross-validation applied to 50 simulated datasets. The average error rate is about 50%, as it should be.

