

生物统计(2)回归模型 Chapter 18

俞章盛

教授 生命学院生物信息与生物统计系 客座教授 耶鲁大学生物统计系

Outline

生命科学技术学院 School of Life Sciences and Biotechnology

- Regression concept
- Simple linear regression model
 - Formulation of the model
 - Estimation of regression coefficients
 - Inference of regression coefficients
 - Inference for predicted values
 - Model evaluation
- Extension

Linear regression concept

- Correlation coefficient tells us the magnitude at which two random variables are linearly associated with each other; it does not tell us how change in one variable impact the value of the other one
- Linear regression seeks to identify the linear functional form (intercept and slope) between the mean of one variable (*response variable, dependent variable* or *outcome variable*) and any fixed value of the other variable (*explanatory variable*, *independent variable*, *covariate, predictor* or *regressor*)
- The ultimate objective is
 - Assess how change in the predictor impact value of the response.
 - Estimate or predict the response that is associated with a fixed value of the predictor.

Representation of a line

A line can be represented as

 $y = \alpha + \beta x$

- x and y correspond to the coordinates on X axis and Y axis, respectively
- α is called the **intercept**; α is the value of y when x = 0
- β is called the **slope** :
 - * When $\beta > 0$ or positive slope, y increases as x increases. For every unit increase in x, the increase in y is β .
 - * When $\beta < 0$ or negative slope, *y* decreases as *x* increases. For every unit increase in *x*, the decrease in *y* is $-\beta$.
 - * When $\beta = 0 \Rightarrow$ a line parallel to X axis and y is a constant that does not change as x ranges over all possible values

Lines with different intercept and same slop?

Consider dependent variable *Y* and independent variable *X*.

We assume that

• Given any fixed value x of X, Y follows a normal distribution

with mean $\mu_{y/x}$ and variance $\sigma_{y/x}^2$,

• $\mu_{y/x} = \alpha + \beta x \Rightarrow$ the mean of *Y* is linearly associated the values of *X*

(α and β are called **regression coefficients**)

• $\sigma_{y/x}^2 = \sigma^2$ is a constant \Rightarrow the variance of Y given any fixed value x is

the same (**homoscedasicity**)

The model cont.

Now, let (x_i, y_i) , i = 1, 2, ..., n, be a random sample. Based on the assumption just proposed, we have

 $y_i = \alpha + \beta x_i + \varepsilon_i,$

where ε_i is an error term that accounts for variability from what is expected from a line. In accordance with previous assumptions, the error terms is assumed to have a normal distribution with mean 0 and variance $\sigma_{y/x}^2 = \sigma^2$.

We also have to assume y_i are independent of y_i for different i and j.

Head circumference example

- Among children of both sexes, head circumference appears to increase linearly **with gestational age**.
- Head circumference is the outcome variable and **gestational** age is the independent variable
- An understanding of their relationship helps parents and pediatricians to monitor growth and detect possible cases of macrocephaly and microcephaly
- A sample of 100 low birth weight infants born in Boston is available for analysis
- Mean(head circumference)= α + β ×gestational age

Institute of Media, Information, and Network Which line is better?

Institute of Media, Information, and Network Least Square Estimate

To fit a line to data (x_i, y_i) , i = 1, 2, ..., n, we would like that the points are as close to the line as possible. Obviously, it is impossible to find a line that passes every point. Therefore, we need to have some criteria on what is the best line in terms of the distance between the data points and a fitted line. One criteria is the least squares criteria and the associated method in finding the line is called **method of least squares**.

Let $\hat{y}_i = \alpha + \beta x_i$ be the value on the fitted line corresponding to x_i , then define the **residual** e_i as

$$e_i = y_i - \hat{y}_i.$$

Least Square Estimate

Intuitively, we want to fit a line that makes the residuals as small as possible. The method of least squares seeks a line that minimizes the sum of the squares of the residuals, or the **error sum of squares** (SSE).

Specifically, we try to find $(\hat{\alpha}, \hat{\beta})$ such that

$$SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \hat{\alpha} - \hat{\beta} x_i)^2$$

is minimized.

Methods of least squares cont.

The estimates of α and β based on method of least squares are

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}, \quad \hat{\alpha} = \overline{y} - \hat{\beta}\overline{x}$$

with

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$
 and $\overline{y} = \frac{\sum_{i=1}^{n} y_i}{n}$

1. Institute of Media, Information, and Network Interence for regression coefficiences and Biotechnology

At It can be about mothematically that

$$\operatorname{se}(\hat{\beta}) = \frac{\sigma}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2}} \text{ and } \operatorname{se}(\hat{\alpha}) = \sigma \sqrt{\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2}}$$

Usually, σ , the standard deviation of the error term, is not known. Hence, we need to estimate

it by the standard deviation of the residuals :

$$s = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2}} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{\alpha} - \hat{\beta}x_i)^2}{n-2}}$$

Therefore,

se^{*}(
$$\hat{\beta}$$
) = $\frac{s}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$ and se^{*}($\hat{\alpha}$) = $s\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$

Institute of Media, Information, and Network Interence tor regression coefficiences and Biotechnology

Inference of β

• The slope is usually the more important coefficient in that it quantifies the average change

in y that correspond each one - unit change in x. In particular, $\beta = 0$ implies that there is no linear relationship between x and y; the mean value of y is the same regardless of the value of x.

• Hypothesis testing :

$$H_0: \beta = \beta_0$$
 versus $H_A: \beta \neq \beta_0$

Under the null hypothesis, $T = \frac{\hat{\beta} - \beta_0}{\operatorname{se}^*(\hat{\beta})}$ has a *t* distribution with *n*-2 degrees of freedom. Hence,

reject the null hypothesis when $|T| > t_{n-2,\alpha/2}$.

• $(1 - \alpha) \times 100\%$ CI for β :

 $(\hat{\beta} - t_{n-2,\alpha/2} \operatorname{se}^*(\hat{\beta}), \hat{\beta} + t_{n-2,\alpha/2} \operatorname{se}^*(\hat{\beta}))$

Matrix Derivation of LSE

$$\begin{split} Y &= (Y_{1}, Y_{2}, \cdots, Y_{n})^{T} \qquad X^{T} = \begin{pmatrix} i & X_{1}, \cdots, X_{n} \\ i & X_{n}, & X_{n} \end{pmatrix} \qquad \underbrace{f}^{S} = (\beta_{n}, \beta_{n} + \cdots, \beta_{p})^{T} \\ Y &= X^{T}\beta_{n}^{S} + \underbrace{g} \qquad & i \\ i & X_{n}, & X_{n}p \end{pmatrix} \qquad \underbrace{f}^{S} = (\xi_{n}, \omega_{n}, \xi_{n})^{T} \\ \sum \left[(\xi_{n}, \omega_{n}, \xi_{n})^{T} + (\xi_{n}, \xi_{n}$$

Matrix Derivation of LSE

Vector derivation

$$f(x) = x^{T}B \qquad \frac{df(w)/dy}{dy} = B$$

$$f(w) = x^{T}b \qquad \longrightarrow = b$$

$$f(y) = x^{T}x \qquad \longrightarrow 2x$$

$$f(x) = x^{T}Bx \qquad \longrightarrow 2x$$

$$f(x) = x^{T}Bx \qquad \longrightarrow 2x$$

$$f(x) = f(b(x)) = \longrightarrow f'(b(x)) = \frac{db(x)}{dx}$$

$$= b(x)^{T}b(x) \longrightarrow 2b(x) = \frac{db(x)}{dx}$$

Institute of Media, Information, and Network Interence for regression coef School of Life Sciences and Biotechnology

Inference of α

cont

• Hypothesis testing :

 $H_0: \alpha = \alpha_0$ versus $H_A: \alpha \neq \alpha_0$

Under the null hypothesis, $T = \frac{\hat{\alpha} - \alpha_0}{\operatorname{se}^*(\hat{\alpha})}$ has a *t* distribution with *n*-2 degrees of freedom. Hence,

reject the null hypothesis when $|T| > t_{n-2,\alpha/2}$.

• $(1 - \alpha) \times 100\%$ CI for α :

$$(\hat{\alpha} - t_{n-2,\alpha/2} \operatorname{se}^*(\hat{\alpha}), \hat{\alpha} + t_{n-2,\alpha/2} \operatorname{se}^*(\hat{\alpha}))$$

- Recall that α is the mean value of y corresponding to x = 0. The x_i 's are far away from 0
- under many situations and x is not even allowed to be 0 sometimes. Therefore, the interpretation of such an coefficient is not very meaningful under such circumstances. In practice, we usually use a centered version of x_i in the regression analysis. That is, create

$$x_i^c = x_i - \overline{x},$$

and fit a regression line $y = \alpha^{c} + \beta x$ for (x_{i}^{c}, y_{i}) . Here, β has exactly the same interpretation as

before and α^{c} is the mean value of y associated with mean value \bar{x} .

• A test of $H_0: \beta = 0$ is equivalent to the test of $H_0: \rho = 0$, where ρ is the population correlation coefficient between *x* and *y*.

Head circumference example cont.

$$s = 1.59$$
 $s_x = 2.534$ $\beta = 0.78$

$$H_0: \beta = 0$$
 vs. Ha: $\beta \neq 0$
se* $(\hat{\beta}) = s / \sqrt{\sum_{i=1}^n (x_i - \overline{x})^2} = 1.59 / \sqrt{99 \times 2.534^2} = 0.063$
 $T = \frac{0.78}{0.063} = 12.36$

For a $t_{98}(0.025)=1.98$. Since T>1.98, we reject the null hypotheses *at* 5% significance level and conclude that with each unit increase of gestational age, there is a significant change (increase) of the mean head circumference.

95% CI: (0.78-1.98(0.063), 0.78+1.98(0.063)) = (0.656, 0.904)

```
What is we want to test H0: beta=1?
```


Model Diagnosis—Goodness of fit

```
> fit_lbwi<-lm(headcirc~gestage,data=data_lbwi)
> summers ar (fit_lburi)
```

```
> summary(fit_lbwi)
```

```
Call:
Im(formula = headcirc ~ gestage, data = data_lbwi)
```

```
Residuals:
Min 1Q Median 3Q Max
-3.5358 -0.8760 -0.1458 0.9041 6.9041
```

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.91426 1.82915 2.14 0.0348 *

gestage 0.78005 0.06307 12.37 <2e-16 ***

----

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
Residual standard error: 1.59 on 98 degrees of freedom
Multiple R-squared: 0.6095, Adjusted R-squared: 0.6055
F-statistic: 152.9 on 1 and 98 DF, p-value: < 2.2e-16
```


Model Diagnosis—Residual plots

Fitted values

Model Diagnosis—Normality

Theoretical Quantiles

Model Diagnosis—Homogeneity

Fitted values

Connection to ANOVA

Simple linear regression is closely relates to the concept of ANOVA.

•For each fixed value of x, the mean value of y is $\mu_{y/x} = \alpha + \beta x$. Therefore,

the null hypothesis that $\beta = 0$ is equivalent to saying that

these infinite number of populations have the same mean.

• The within group variation in the simple linear regression setting is measured by mean squares of error

MSE =
$$\frac{\text{SSE}}{n-2} = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2} = s^2.$$

Connection to ANOVA

• The between group variation in the simple linear regression setting

is measured by mean squares due to regression

$$MSR = \frac{\text{sum of squares due to regression}}{1} = \frac{SSR}{1} = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2.$$

• The statistic $F = \frac{MSR}{MSE}$ follows an *F* distribution with 1 and *n*-2 degrees

of freedom under the null hypothesis that the infinite number of populations have the same mean. The *F* test is equivalent to the *t* test of $\beta = 0$.

ANOVA table

Source of variation	Sum of Squares (SS)	df	Mean Squares (MS)	F Statistic	P-value
Regression	$\mathbf{SSR} = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$	1	$\mathbf{MSR} = \frac{\mathbf{SSR}}{1}$	$F = \frac{\text{MSR}}{\text{MSE}}$	$\mathbf{P}(F > \mathbf{calculated} F)$
Residuals (Errors)	$\mathbf{SSE} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$	n-2	$MSE = \frac{SSE}{n-2}$	$H_0: \beta =$	= 0
Total	$\mathbf{SST} = \sum_{i=1}^{n} (y_i - \bar{y})^2$	<i>n</i> -1	s S	.2	

Multiple Linear Regression

 $Y_i = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki} + \varepsilon_i.$

with the same distribution assumption for the noise term.

- Remember $\hat{\beta} = (XX^T)^{-1}(X^TY)$
- Multicollinearity refers to a situation in which two or more explanatory variables in a <u>multiple regression</u> model are highly linearly related.
- If the XX^T is not of full rank(collinear), the $\hat{\beta}$ is not computable.
- Even if XX^T is invertible, a high correlation among Xs will affect the standard error estimators.
- Using variance inflation factor: $VIFj = \frac{1}{1-R_j^2}$ where R_j^2 is the coefficient of determination of Xj versus other Xs.

Coefficient of Determination

• R_j^2 is obtained by regress Xj vs X1, X2, ..., Xp without Xj. The R^2 of the regression model is R_j^2

> summary(Im(gestage~+length+birthwt+momage+toxemia ,data=data_lbwi)) ##calculate the R-square of gestage

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.798835 2.050346 7.705 1.25e-11 ***
length 0.193789 0.077733 2.493 0.014397 *
birthwt 0.003918 0.001012 3.872 0.000198 ***
momage 0.042371 0.026949 1.572 0.119222
toxemia 2.264834 0.389897 5.809 8.34e-08 ***
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
Residual standard error: 1.558 on 95 degrees of freedom

Multiple R-squared: 0.6372, Adjusted R-squared: 0.6219

F-statistic: 41.71 on 4 and 95 DF, p-value: < 2.2e-16
```


Summary(mfit_lbwi) Multiple Regression Model

> vif(data_lbwi[,2:6]) #calcualte the VIF. Variables VIF

- 1 length 3.348036
- 2 gestage 2.756302
- 3 birthwt 3.523658
- 4 momage 1.087551
- 5 toxemia 1.407603

If VIF0>0, there is a problem with variance estimation of the coefficients

Im(formula = headcirc ~ gestage + length + gestage + birthwt + momage + toxemia, data = data_lbwi)

Residuals:

Min 1Q Median 3Q Max -2.0190 -0.6712 -0.0364 0.3334 8.0421

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 7.2097216 2.1285705 3.387 0.00103 ** gestage 0.5261922 0.0835553 6.298 9.62e-09 *** length 0.0082711 0.0653434 0.127 0.89954 birthwt 0.0042555 0.0008867 4.799 5.99e-06 *** momage -0.0300651 0.0222312 -1.352 0.17950 toxemia -0.5160581 0.3696445 -1.396 0.16597

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.269 on 94 degrees of freedom Multiple R-squared: 0.7615. Adjusted R-squared: 0.74

Head Circumference

Model selection- stepwise regression

- Build regression model from a set of candidate predictor variables by entering and removing predictors based on p values, in a stepwise manner until there is no variable left to enter or remove any more.
- At each step, each variables will be added into the model at a time. The variable with the smallest p-value (and lower than the prespecified threshold p-value for inclusion) will be included.
- At the same time, in the new model, the p-value of all variable will be examined. If there is any variable with updated p-value larger than the threshold p-value for removal), it will be removed.

- install.package(olsrr)
- library(olsrr)
- ols_step_both_p(mfit_lbwi,pent = 0.2, prem = 0.15, progress = TRUE, details = FALSE)
- stsel=ols_step_both_p(mfit_lbwi,pent = 0.2, prem = 0.15, progress = TRUE, details = FALSE)
- plot(stsel)

All possible models, best subset

- ##All possible models
- ols_step_all_possible(mfit_lbwi,pent = 0.2, prem = 0.15, progress = TRUE, details = FALSE)
- allpos=ols_step_all_possible(mfit_lbwi,pent = 0.2, prem = 0.15, progress = TRUE, details = FALSE)
- plot(allpos)
- ##Best subset
- ols_step_best_subset(mfit_lbwi,pent = 0.2, prem = 0.15, progress = TRUE, details = FALSE)
- bestsubset=ols_step_best_subset(mfit_lbwi,pent = 0.2, prem = 0.15, progress = TRUE, details = FALSE)
- plot(bestsubset)

Model selection- LASSO

- Bias-variance tradeoff
- Ridge regression
- LASSO(Least Absolute Shrinkage and Selection Operator)

Model selection- LASSO

For the OLS, we obtain
$$\beta$$
 by mining $\Sigma(T_i - x_i\beta)^2$
Prediction error (PE). If we have a new observation,
The estimated \hat{Y}_i should be (lose to new T_i :
 $PE(x_0) = E_{Y|X=X} \cdot ((Y - \hat{f}(X))^2 | X = T_0]$
 $= E_{Y|X=X} \cdot [f(X_0) + \Sigma - E(\hat{f}(X_0)) - \hat{f}(X_0)]^2$
 $= E_{Y|X=X} \cdot [f(X_0) + \Sigma - E(\hat{f}(X_0)) - \hat{f}(X_0)]^2$
 $= E_{Y|X=X} \cdot [f(X_0) - E(\hat{f}(X_0))^2$
 $= U_{X=X} \cdot [f(X_0) - E(\hat{f}(X_0))^2$
 $= U_{X=X} \cdot [f(X_0) - E(\hat{f}(X_0))^2$
 $= U_{X=X} \cdot [f(X_0) + E(\hat{f}(X_0))^2$
 $= U_{X=X} \cdot [f(X_0) + E(\hat{f}(X_0))^2$
 $= U_{X=X} \cdot [f(X_0) + E(\hat{f}(X_0)) + [Diau(\hat{f}(X_0))]^2$
 $= U_{X=X} \cdot [f(X_0) + U_{X=X} \cdot [f(X_0)]^2$
 $= U_{X=X} \cdot [f(X_0) + U_{X=X} \cdot [f(X_0)]^2$

Model selection- LASSO

If # of predictor is large, we somethic may have difficulty obtaining (x x)-! One way is to introduce "ponalty <u>j</u> (Y: - fr) - <u>n</u> The solution Bois = (XTX) - (XTY) BPLS = (X'X + NI+) - X'Y This is can ridge regression. T is called the tuning parameter IS Bpls biased ?

Model selection- LASSO

LASSO: (Least absolute christologe and selection operator) When p is large, and there are some X; has no effect on Y, we would like to kilk out those by $\Sigma(X_i - X_i^T \beta)^2 + \Im \tilde{\Sigma}[\beta_i]$ How: Li poselty ridge

library(glmnet) las=glmnet(data_lbwi[,2:6],data_lbwi[,1], family = c("gaussian"))

Interactions

$$\begin{aligned} y_{i} &= \beta \cdot \forall x_{1} \beta_{1} + x_{2} \beta_{2} + \xi_{i} \\ y_{i} &= \beta \cdot \forall x_{1} \beta_{1} + x_{2} \beta_{2} + \chi_{0} x_{1} x_{2} \beta_{3} + \xi_{i} \\ \text{If } \beta_{3} \text{ is significur, then there is an interaction effect between } x_{i}, x_{2}. \\ \text{If } x_{1} \in [0, 1] \quad x_{2} \in \{0, 1] \\ \beta_{3} &= E \underline{E[Y|X_{i}=1, X_{2}=1] - E \overline{E[Y|X_{i}=1, X_{2}=0]} \\ \beta_{1} + \beta_{3} \\ &= \frac{E \overline{E[Y|X_{i}=0, X_{2}=1] - E \overline{E[Y|X_{i}=0, X_{2}=0]}}{\beta_{2}} \\ &= \beta_{3} \end{aligned}$$

Non-linear Covariate Effect

Non-linear Covariate Effect

Local Kernel Method

The $k_h(x_i, x_s) = \frac{1}{h} k\left(\frac{x_i - x_o}{h}\right)$ which is the kernels weight. k(x) can be a symemstrin function. e.g. k(x)= h is the brandwidth Control the Smoothness of the estimated function

Non-linear Covariate Effect

Epanechnikov $K(u)=rac{3}{4}(1-u^2)$

Gaussian

- As h->0, the bias introduced by the weight ->0, the variance increases.
- As h increases, the bias increase,

the variance decreases.

Bandwidth


```
library(np)
ord=order(data_lbwi$length)
data_lbwi=data_lbwi[ord,]
model.np <-
npreg(data_lbwi$headcir~data_lbwi$length ,regtype =
"II",bwmethod = "cv.aic",gradients = TRUE)
summary(model.np)
npsigtest(model.np)</pre>
```

```
model.par <- Im(data_lbwi$headcir~data_lbwi$length)
plot(data_lbwi$length, data_lbwi$headcir, xlab = "length", ylab
= "head circumference", cex=.1)
lines(data_lbwi$length, fitted(model.np), lty=1, col = "blue")
lines(data_lbwi$length, fitted(model.par), lty = 2, col = " red")</pre>
```


Smoothing Spline

$$Y = f(x_{0}) + f(x_{0}) + f(x_{0}) = f(x_{0})^{T} [Y - f(x_{0})]^{T} [Y - f(x_{0})]^{T}$$

$$ISE: \Sigma(Y_{i} - f(x_{0}))^{T} (Y_{i} - f(x_{0}))^{T} (Y_{i} - f(x_{0}))^{T} (Y_{i} - f(x_{0}))^{T} (Y_{i} - f(x_{0}))^{T} = Y_{i} (meaning less)$$

$$PLH = \Sigma (Y_{i} - f(x_{0}))^{T} + \Im \int [f''(x_{0})]^{T} dx$$

$$(pena(jed) + ke second derivative)$$

$$OF The minimizer W'M be G Cab'a Spline with and X_{0} as the basis. f(x_{0}) = \int_{j=1}^{K} \beta_{j} \beta_{j} (x_{0}) f^{T} Sme\beta_{j}$$

$$B_{j}(x) is the subin spline basis. reverse f(x_{0}) = \beta^{T} B(x_{0})$$

$$\beta = (\beta_1 \dots \beta_p)^T \quad \frac{1}{3(\infty)} = (13, 124), \dots B_p (24))^T$$

.

Smoothing Spline

If we accept the above chackusion

$$\begin{aligned}
\int f^{(1)}(x)^{3} dx &= \int [\frac{\pi}{2} \beta_{3} \beta_{3}^{(1)}(y_{1})]^{3} dx = \int \beta^{T} \beta^{T} \beta^{T}(x) \beta^{T} \beta dx \\
&= \beta^{T} \int \beta^{T} \beta^{T} \beta^{T} \beta^{T} dx \beta^{T} = \beta^{T} \frac{p}{p} \beta^{T} \beta^{T$$

Cubic B-spline basis functions

Fit Spline using MGCV

library(mgcv)

```
b <- gam(birthrt~gnp,family=gaussian(),data=data_gnp)
b <- gam(birthrt~s(gnp),family=gaussian(),bs=cr,
data=data_gnp)
plot(b)
```

