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Linear regression concept

• Correlation coefficient tells us the magnitude at which two random variables are linearly 
associated with each other; it does not tell us how change in one variable impact the 
value of the other one

• Linear regression seeks to identify the linear functional form (intercept and slope) 
between the mean of one variable (response variable, dependent variable or 
outcome variable) and any fixed value of the other variable (explanatory variable, 
independent variable, covariate, predictor or regressor)

• The ultimate objective is  
• Assess how change in the predictor impact value of the response.

• Estimate or predict the response that is associated with a fixed value of the predictor.



Representation of a line
A line can be represented as
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The model



The model cont.

Now, let ( , ),  1, 2, , , be a random sample. Based on the 

assumption just proposed, we have
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Head circumference example

• Among children of both sexes, head circumference appears to increase 
linearly with gestational age.

• Head circumference is the outcome variable and gestational age is the 
independent variable

• An understanding of their relationship helps parents and 
pediatricians to monitor growth and detect possible cases of 
macrocephaly and microcephaly

• A sample of 100 low birth weight infants born in Boston is available for 
analysis

• Mean(head circumference)=α+β×gestational age





),( ii yx

ixy x
i

 +=|

ixyii y | −=



Which line is better?



Least Square Estimate

iTo fit a line to data ( , ),  1,  2, ,  we would like that the points are as close to the line

as possible. Obviously, it is impossible to find a line that passes every point. Therefore, 

we need to 

ix y i n=

have some criteria on what is the best line in terms of 

the distance between the data points and a fitted line. One criteria is 

the least squares criteria and the associated method in finding the line is called
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Least Square Estimate

Intuitively, we want to fit a line that makes the residuals as small as possible. 

The method of least squares seeks a line that minimizes the sum of the squares

of the residuals, or the  error sum of sq
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 (SSE). 
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Methods of least squares cont.
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Inference for regression coefficients 
cont.
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Inference for regression coefficients 
cont.
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Matrix Derivation of LSE



Matrix Derivation of LSE



Inference for regression coefficients 
cont.
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Head circumference example cont.
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 and conclude that with each unit increase of

gestational age, there is a significant change (increase) of the mean 

head circumference.

95% CI: (0.78-1.98(0.063),0.78 1.98(0.063)) (0.656,0.904)+ =

What is we want to test H0: beta=1?



Model Diagnosis—Goodness of fit
> fit_lbwi<-lm(headcirc~gestage,data=data_lbwi)
> summary(fit_lbwi)

Call:
lm(formula = headcirc ~ gestage, data = data_lbwi)

Residuals:
Min      1Q  Median      3Q     Max 

-3.5358 -0.8760 -0.1458  0.9041  6.9041 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  3.91426    1.82915    2.14   0.0348 *  
gestage      0.78005    0.06307   12.37   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.59 on 98 degrees of freedom
Multiple R-squared:  0.6095,    Adjusted R-squared:  0.6055 
F-statistic: 152.9 on 1 and 98 DF,  p-value: < 2.2e-16



Model Diagnosis—Residual plots



Model Diagnosis—Normality



Model Diagnosis—Homogeneity 

Residual plots



Connection to ANOVA

Simple linear regression is closely relates to the concept of ANOVA. 

For each fixed value of , the mean value of  is . Therefore, 

the null hypothesis that 0 is equivalent to saying that 
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these infinite number of populations have the same mean. 

 The within group variation in the simple linear regression setting is 

measured by mean squares of error 
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Connection to ANOVA

2

1

 The between group variation in the simple linear regression setting

 is measured by mean squares due to regression

sum of squares due to regression SSR
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ANOVA table



Multiple Linear Regression

with the same distribution assumption for the noise term.

• Remember መ𝛽 = 𝑋𝑋𝑇 −1(𝑋𝑇𝑌)

• Multicollinearity refers to a situation in which two or more explanatory 
variables in a multiple regression model are highly linearly related. 

• If the 𝑋𝑋𝑇 is not of full rank(collinear), the መ𝛽 is not computable.

• Even if 𝑋𝑋𝑇 is invertible, a high correlation among Xs will affect the 
standard error estimators.

• Using variance inflation factor: VIFj=
1

1−𝑅𝑗
2 where 𝑅𝑗

2is the coefficient of 

determination of Xj versus other Xs.

https://en.wikipedia.org/wiki/Multiple_regression


Coefficient of Determination

• 𝑅𝑗
2 is obtained by regress Xj vs X1, X2, …, Xp without Xj. The 𝑅2 of 

the regression model is 𝑅𝑗
2

> summary(lm(gestage~+length+birthwt+momage+toxemia ,data=data_lbwi)) ##calculate the R-square of 
gestage
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept) 15.798835   2.050346   7.705 1.25e-11 ***
length       0.193789   0.077733   2.493 0.014397 *  
birthwt      0.003918   0.001012   3.872 0.000198 ***
momage       0.042371   0.026949   1.572 0.119222    
toxemia      2.264834   0.389897   5.809 8.34e-08 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.558 on 95 degrees of freedom
Multiple R-squared:  0.6372,    Adjusted R-squared:  0.6219 
F-statistic: 41.71 on 4 and 95 DF,  p-value: < 2.2e-16



Multiple Regression Model

> vif(data_lbwi[,2:6]) #calcualte the VIF.
Variables      VIF

1    length 3.348036
2   gestage 2.756302
3   birthwt 3.523658
4    momage 1.087551
5   toxemia 1.407603

> summary(mfit_lbwi)

Call:
lm(formula = headcirc ~ gestage + length + gestage + birthwt + 

momage + toxemia, data = data_lbwi)

Residuals:
Min      1Q  Median      3Q     Max 

-2.0190 -0.6712 -0.0364  0.3334  8.0421 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  7.2097216  2.1285705   3.387  0.00103 ** 
gestage      0.5261922  0.0835553   6.298 9.62e-09 ***
length       0.0082711  0.0653434   0.127  0.89954    
birthwt      0.0042555  0.0008867   4.799 5.99e-06 ***
momage      -0.0300651  0.0222312  -1.352  0.17950    
toxemia     -0.5160581  0.3696445  -1.396  0.16597    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.269 on 94 degrees of freedom
Multiple R-squared:  0.7615,    Adjusted R-squared:  0.74

If VIF0>0， there is a problem with 
variance estimation of the coefficients



Multicollinearity



Model selection- stepwise regression

• Build regression model from a set of candidate predictor variables 
by entering and removing predictors based on p values, in a 
stepwise manner until there is no variable left to enter or remove 
any more.

• At each step, each variables will be added into the model at a 
time. The variable with the smallest p-value (and lower than the 
prespecified threshold p-value for inclusion) will be included.

• At the same time, in the new model, the p-value of all variable will 
be examined. If there is any variable with updated p-value larger 
than the threshold p-value for removal), it will be removed.



Model selection- stepwise regression based 
on p-value

• install.package(olsrr)

• library(olsrr)

• ols_step_both_p(mfit_lbwi,pent = 0.2, prem = 0.15,  progress = TRUE, 
details = FALSE)

• stsel=ols_step_both_p(mfit_lbwi,pent = 0.2, prem = 0.15,  progress = 
TRUE, details = FALSE)

• plot(stsel)



All possible models, best subset

• ##All possible models

• ols_step_all_possible(mfit_lbwi,pent = 0.2, prem = 0.15,  progress = TRUE, details = FALSE)

• allpos=ols_step_all_possible(mfit_lbwi,pent = 0.2, prem = 0.15,  progress = TRUE, details = 
FALSE)

• plot(allpos)

• ##Best subset

• ols_step_best_subset(mfit_lbwi,pent = 0.2, prem = 0.15,  progress = TRUE, details = FALSE)

• bestsubset=ols_step_best_subset(mfit_lbwi,pent = 0.2, prem = 0.15,  progress = TRUE, 
details = FALSE)

• plot(bestsubset)



Model selection- LASSO

• Bias-variance tradeoff

• Ridge regression

• LASSO(Least Absolute Shrinkage and Selection Operator)



Model selection- LASSO



Model selection- LASSO



Model selection- LASSO

library(glmnet)
las=glmnet(data_lbwi[,2:6],data_lbwi[,1], family = 
c("gaussian"))



Interactions



Non-linear Covariate Effect

• Local Kernel Method



Non-linear Covariate Effect

• Local Kernel Method



Non-linear Covariate Effect

Epanechnikov

Gaussian



Bandwidth

• As h->0, the bias introduced by the weight ->0, the variance 
increases.

• As h increases, the bias increase,

the variance decreases.



Bandwidth

library(np)
ord=order(data_lbwi$length)
data_lbwi=data_lbwi[ord,]
model.np <-
npreg(data_lbwi$headcir~data_lbwi$length ,regtype = 
"ll",bwmethod = "cv.aic",gradients = TRUE)
summary(model.np)
npsigtest(model.np)

model.par <- lm(data_lbwi$headcir~data_lbwi$length)
plot(data_lbwi$length, data_lbwi$headcir, xlab = "length", ylab
= "head circumference", cex=.1)
lines(data_lbwi$length, fitted(model.np), lty=1,  col = "blue")
lines(data_lbwi$length, fitted(model.par), lty = 2, col = " red")



Smoothing Spline



Smoothing Spline



Cubic B-spline basis functions



Fit Spline using MGCV

library(mgcv)

b <- gam(birthrt~gnp,family=gaussian(),data=data_gnp)
b <- gam(birthrt~s(gnp),family=gaussian(),bs=cr, 
data=data_gnp)
plot(b)


