生物统计（2）回归模型 Chapter 18

俞章盛

教授 生命学院生物信息与生物统计系客座教授 耶鲁大学生物统计系

Outline

－Regression concept
－Simple linear regression model
－Formulation of the model
－Estimation of regression coefficients
－Inference of regression coefficients
－Inference for predicted values
－Model evaluation
－Extension

Institute of Media， Information，and Network
－Correlation coefficient tells us the magnitude at which two random variables are linearly associated with each other；it does not tell us how change in one variable impact the value of the other one
－Linear regression seeks to identify the linear functional form（intercept and slope） between the mean of one variable（response variable，dependent variable or outcome variable）and any fixed value of the other variable（explanatory variable， independent variable，covariate，predictor or regressor）
－The ultimate objective is
－Assess how change in the predictor impact value of the response．
－Estimate or predict the response that is associated with a fixed value of the predictor．

Representation of a line

A line can be represented as

$$
y=\alpha+\beta x
$$

－x and y correspond to the coordinates on X axis and Y axis，respectively
－α is called the intercept；α is the value of y when $x=0$
－β is called the slope ：
＊When $\beta>0$ or positive slope，y increases as x increases．For every unit increase in x ， the increase in y is β ．
＊When $\beta<0$ or negative slope，y decreases as x increases．For every unit increase in x ， the decrease in y is $-\beta$ ．
＊When $\beta=0 \Rightarrow$ a line parallel to X axis and y is a constant that does not change as x ranges over all possible values

Consider dependent variable Y and independent variable X ．
We assume that
－Given any fixed value x of X, Y follows a normal distribution
with mean $\mu_{y \mid x}$ and variance $\sigma_{y \mid x}^{2}$ ，
－$\mu_{y \mid x}=\alpha+\beta x \Rightarrow$ the mean of Y is linearly associated the values of X
（ α and β are called regression coefficients）
－$\sigma_{y \mid x}^{2}=\sigma^{2}$ is a constant \Rightarrow the variance of Y given any fixed value x is
the same（homoscedasicity）

Now，let $\left(x_{i}, y_{i}\right), i=1,2, \ldots, n$ ，be a random sample．Based on the assumption just proposed，we have

$$
y_{i}=\alpha+\beta x_{i}+\varepsilon_{i},
$$

where ε_{i} is an error term that accounts for variability from what is expected from a line．In accordance with previous assumptions，the error terms is assumed to have a normal distribution with mean 0 and variance $\sigma_{y \mid x}^{2}=\sigma^{2}$ ．
We also have to assume y_{i} are independent of y_{j} for different i and j ．

Institute of Media，
Information，and Network

Head circumference example

－Among children of both sexes，head circumference appears to increase linearly with gestational age．
－Head circumference is the outcome variable and gestational age is the independent variable
－An understanding of their relationship helps parents and pediatricians to monitor growth and detect possible cases of macrocephaly and microcephaly
－A sample of 100 low birth weight infants born in Boston is available for analysis
－Mean（head circumference）$=\alpha+\beta \times$ gestational age

To fit a line to data $\left(x_{\mathrm{i}}, y_{i}\right), i=1,2, \ldots n$ ，we would like that the points are as close to the line as possible．Obviously，it is impossible to find a line that passes every point．Therefore， we need to have some criteria on what is the best line in terms of the distance between the data points and a fitted line．One criteria is the least squares criteria and the associated method in finding the line is called method of least squares．

Let $\hat{y}_{i}=\alpha+\beta x_{i}$ be the value on the fitted line corresponding to x_{i} ， then define the residual e_{i} as

$$
e_{i}=y_{i}-\hat{y}_{i} .
$$

Least Square Estimate

Intuitively，we want to fit a line that makes the residuals as small as possible． The method of least squares seeks a line that minimizes the sum of the squares of the residuals，or the error sum of squares（SSE）．

Specifically，we try to find（ $\hat{\alpha}, \hat{\beta}$ ）such that

$$
\mathrm{SSE}=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{\alpha}-\hat{\beta} x_{i}\right)^{2}
$$

is minimized．

Institute of Media，
Information，and Network

Methods of least squares cont．

The estimates of α and β based on method of least squares are

$$
\hat{\beta}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}, \quad \hat{\alpha}=\bar{y}-\hat{\beta} \bar{x}
$$

with

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n} \text { and } \bar{y}=\frac{\sum_{i=1}^{n} y_{i}}{n}
$$

$$
\operatorname{se}(\hat{\beta})=\frac{\sigma}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} \text { and } \operatorname{se}(\hat{\alpha})=\sigma \sqrt{\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}
$$

Usually，σ ，the standard deviation of the error term，is not known．Hence，we need to estimate it by the standard deviation of the residuals ：

$$
s=\sqrt{\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}}=\sqrt{\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{\alpha}-\hat{\beta} x_{i}\right)^{2}}{n-2}}
$$

Therefore，

$$
\operatorname{se}^{*}(\hat{\beta})=\frac{s}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} \text { and } \operatorname{se}^{*}(\hat{\alpha})=s \sqrt{\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}
$$

Inference of $\boldsymbol{\beta}$

－The slope is usually the more important coefficient in that it quantifies the average change in y that correspond each one－unit change in x ．In particular，$\beta=0 \mathrm{implies}$ that there is no linear relationship between x and y ；the mean value of y is the same regardless of the value of x ．
－Hypothesis testing ：

$$
H_{0}: \beta=\beta_{0} \text { versus } H_{A}: \beta \neq \beta_{0}
$$

Under the null hypothesis，$T=\frac{\hat{\beta}-\beta_{0}}{\operatorname{se}^{*}(\hat{\beta})}$ has a t distribution with $n-2$ degrees of freedom．Hence， reject the null hypothesis when $|T|>t_{n-2, \alpha / 2}$ ．
－$(1-\alpha) \times 100 \% \mathrm{CI}$ for β ：

$$
\left(\hat{\beta}-t_{n-2, \alpha / 2} \operatorname{se}^{*}(\hat{\beta}), \hat{\beta}+t_{n-2, \alpha / 2} \operatorname{se}^{*}(\hat{\beta})\right)
$$ Matrix Derivation of LSE

$$
\begin{aligned}
& \begin{array}{ll}
Y=\left(y_{1}, y_{2} ; \cdots, y_{n}\right)^{\top} \quad X^{\top}=\left(\begin{array}{cccc}
1 & x_{11} & \cdots & x_{11} \\
1 & x_{11} & x_{21} \\
\vdots & & \vdots \\
1 & x_{n 1} & \vdots \\
1 & x_{n p}
\end{array}\right) \\
Y=X^{\top} \beta+\underline{\varepsilon}
\end{array} \\
& \begin{array}{l}
\beta=\left(\beta_{0}, \beta_{r}, \cdots, \beta_{p}\right)^{\top} \\
\underline{\varepsilon}=\left(\varepsilon, \omega_{1}, \varepsilon_{n}\right)^{\top}
\end{array} \\
& \angle S E \underline{\hat{\beta}}=\underset{\underline{\beta}}{\operatorname{argmin}} \frac{\left(Y-X^{\top} \beta\right)^{\top}\left(Y-X^{\top} \beta\right)}{\angle S E} \\
& \frac{\partial \operatorname{LSE}(\beta)}{\partial \underline{\beta}}=2 x\left(Y-X^{\top} \beta\right)^{\top}=2 X \underline{Y}-\left(x x^{\top}\right) \beta=0 \\
& \hat{\beta}=\left(X x^{\top}\right)^{-1} x y \\
& \text { If } X=\left(\begin{array}{cccc}
1 & x_{1} & \cdots & x_{\mathbb{1}} \\
\vdots & & & \\
1 & x_{n} & \cdots & x_{1 p}
\end{array}\right) \Rightarrow \hat{\beta}=\left(X^{\top} X\right)^{-1} x^{\top} Y \\
& \operatorname{Cov}(\hat{\beta}) \text { 䛔 }
\end{aligned}
$$ Matrix Derivation of LSE

Vector derivations

$$
\begin{aligned}
f(x) & =x^{\top} B \xrightarrow{d f(x) / d x}=B \\
f(x) & =x^{\top} b \longrightarrow 2 x \\
f(x)=x^{\top} x & \longrightarrow 2 B x \\
f(x)=x \top \beta x & \left.\left.\longrightarrow f^{\prime}(b x)\right) d \theta\right) \frac{d b(x)}{} \\
f(x) & =f(b(x)) \\
& =b(x)^{\top} b(x) \longrightarrow 2 b(x) \frac{d b x)}{d x}
\end{aligned}
$$

Inference of $\boldsymbol{\alpha}$

－Hypothesis testing ：

$$
H_{0}: \alpha=\alpha_{0} \text { versus } H_{A}: \alpha \neq \alpha_{0}
$$

Under the null hypothesis，$T=\frac{\hat{\alpha}-\alpha_{0}}{\operatorname{se}^{*}(\hat{\alpha})}$ has a t distribution with $n-2$ degrees of freedom．Hence，
reject the null hypothesis when $|T|>t_{n-2, \alpha / 2}$ ．
－$(1-\alpha) \times 100 \%$ CI for α ：

$$
\left(\hat{\alpha}-t_{n-2, \alpha / 2} \operatorname{se}^{*}(\hat{\alpha}), \hat{\alpha}+t_{n-2, \alpha / 2} \operatorname{se}^{*}(\hat{\alpha})\right)
$$

－Recall that α is the mean value of y corresponding to $x=0$ ．The x_{i}＇s are far away from 0 under many situations and x is not even allowed to be 0 sometimes．Therefore，the interpretation of such an coefficient is not very meaningful under such circumstances．In practice，we usually use a centered version of x_{i} in the regression analysis．That is，create

$$
x_{i}^{c}=x_{i}-\bar{x},
$$

and fit a regression line $y=\alpha^{\mathrm{c}}+\beta x$ for $\left(x_{i}^{c}, y_{i}\right)$ ．Here，β has exactly the same interpretation as before and α^{c} is the mean value of y associated with mean value \bar{x} ．
－A test of $\mathrm{H}_{0}: \beta=0$ is equivalent to the test of $\mathrm{H}_{0}: \rho=0$ ，where ρ is the population correlation coefficient between x and y ．

$$
s=1.59 \quad \mathrm{~s}_{x}=2.534 \quad \beta=0.78
$$

$$
H_{0}: \beta=0 \quad \text { vs. Ha: } \beta \neq 0
$$

$\mathrm{se}^{*}(\hat{\beta})=s / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=1.59 / \sqrt{99 \times 2.534^{2}}=0.063$
$T=\frac{0.78}{0.063}=12.36$
For a $t_{98}(0.025)=1.98$ ．Since $T>1.98$ ，we reject the null hypotheses at 5% significance level and conclude that with each unit increase of gestational age，there is a significant change（increase）of the mean head circumference．
$95 \% \mathrm{CI}:(0.78-1.98(0.063), 0.78+1.98(0.063))=(0.656,0.904)$
What is we want to test HO ：beta＝1？

Model Diagnosis－Goodness of fit

```
> summary(fit_lbwi)
Call:
Im(formula = headcirc ~ gestage, data = data_Ibwi)
Residuals:
    Min 1Q Median 3Q Max
-3.5358-0.8760-0.1458 0.9041 6.9041
Coefficients:
    Estimate Std. Error t value Pr(> |t|)
(Intercept) 3.91426 1.82915 2.14 0.0348 *
gestage 0.78005 0.06307 12.37 <2e-16 ***
Signif. codes: 0 `***' 0.001 `**` 0.01 `*` 0.05 `.' 0.1 `` 1
```

Residual standard error： 1.59 on 98 degrees of freedom
Multiple R－squared：0．6095，Adjusted R－squared： 0.6055
F－statistic： 152.9 on 1 and 98 DF，p－value：$<2.2 e-16$

Model Diagnosis－Residual plots

\cap Institute of Media，
Information，and Network

Institute of Media，
Information，and Network

Connection to ANOVA

Simple linear regression is closely relates to the concept of ANOVA．
－For each fixed value of x ，the mean value of y is $\mu_{y \mid x}=\alpha+\beta x$ ．Therefore， the null hypothesis that $\beta=0$ is equivalent to saying that these infinite number of populations have the same mean．
－The within group variation in the simple linear regression setting is measured by mean squares of error

$$
\text { MSE }=\frac{\operatorname{SSE}}{n-2}=\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}=s^{2} .
$$

Connection to ANOVA

－The between group variation in the simple linear regression setting is measured by mean squares due to regression
$\mathrm{MSR}=\frac{\text { sum of squares due to regression }}{1}=\frac{\mathrm{SSR}}{1}=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}$.
－The statistic $F=\frac{\text { MSR }}{\text { MSE }}$ follows an F distribution with 1 and $n-2$ degrees of freedom under the null hypothesis that the infinite number of populations have the same mean．The F test is equivalent to the t test of $\beta=0$ ．

Institute of Media，
Information，and Network
？Institute of Media，
Information，and Network

ANOVA table

Source of variation	Sum of Squares （SS）	$d f$	Mean Squares （MS）	F Statistic	P－value
Regression	$\mathrm{SSR}=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}$	1	MSR $=\frac{\mathrm{SSR}}{1}$	$F=\frac{\mathrm{MSR}}{\mathrm{MSE}}$	$\mathrm{P}(F>$ calculated $F)$
Residuals （Errors）	$\mathrm{SSE}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$	$n-2$	MSE $=\frac{\mathrm{SSE}}{n-2}$	$H_{0}: \beta=0$	
Total	$\mathrm{SST}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$	$n-1$	S^{2}		

Multiple Linear Regression

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\cdots+\beta_{k} X_{k i}+\varepsilon_{i} .
$$

with the same distribution assumption for the noise term．
－Remember $\hat{\beta}=\left(X X^{T}\right)^{-1}\left(X^{T} Y\right)$
－Multicollinearity refers to a situation in which two or more explanatory variables in a multiple regression model are highly linearly related．
－If the $X X^{T}$ is not of full rank（collinear），the $\hat{\beta}$ is not computable．
－Even if $X X^{T}$ is invertible，a high correlation among Xs will affect the standard error estimators．
－Using variance inflation factor： $\mathrm{VIFj}=\frac{1}{1-R_{j}^{2}}$ where R_{j}^{2} is the coefficient of determination of Xj versus other Xs ．

Coefficient of Determination

- R_{j}^{2} is obtained by regress Xj vs $\mathrm{X} 1, \mathrm{X} 2, \cdots, \mathrm{Xp}$ without Xj . The R^{2} of the regression model is R_{j}^{2}
> summary(lm(gestage~+length+birthwt+momage+toxemia ,data=data_lbwi)) \#\#calculate the R-square of
gestage
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) 15.798835 $2.050346 \quad 7.705$ 1.25e-11 ***
length 0.1937890 .0777332 .4930 .014397 *
birthwt 0.0039180 .0010123 .8720 .000198 ***
momage 0.0423710 .0269491 .5720 .119222
toxemia $2.2648340 .389897 \quad 5.8098 .34 \mathrm{e}-08$ ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 '.’ 0.1 ‘’ 1
Residual standard error: 1.558 on 95 degrees of freedom
Multiple R-squared: 0.6372, Adjusted R-squared: 0.6219
F-statistic: 41.71 on 4 and 95 DF, p-value: $<2.2 \mathrm{e}-16$
＞vif（data＿Ibwi［，2：6］）\＃calcualte the VIF． Variables VIF
1 length 3.348036
2 gestage 2.756302
3 birthwt 3.523658
4 momage 1.087551
5 toxemia 1.407603

If VIFO＞0，there is a problem with variance estimation of the coefficients

Im（formula $=$ headcirc \sim gestage + length + gestage + birthwt + momage＋toxemia，data＝data＿lbwi）

Residuals：
Min 1Q Median 3Q Max $-2.0190-0.6712-0.03640 .33348 .0421$

Coefficients：
Estimate Std．Error t value $\operatorname{Pr}(>|t|)$

（Intercept）	7.20972162 .1285705
gestage	0.52619220 .08355536 .2989.
length	0.00827110 .06534340 .1270 .89954
birthwt	$0.00425550 .00088674 .7995 .99 \mathrm{e}-06$
momage	－0．0300651 0．0222312－1．352 0.17950
toxemia	－0．5160581 $0.3696445-1.3960 .16597$
Signif．codes： 0	

Residual standard error： 1.269 on 94 degrees of freedom Multiple R－squared：0．7615．Adiusted R－squared： 0.74

Institute of Media，
Information，and Network
生命科学技术学院
School of Life Sciences and Biotechnology

Head Circumference
Scale－Location

Model selection－stepwise regression

－Build regression model from a set of candidate predictor variables by entering and removing predictors based on p values，in a stepwise manner until there is no variable left to enter or remove any more．
－At each step，each variables will be added into the model at a time．The variable with the smallest p－value（and lower than the prespecified threshold p－value for inclusion）will be included．
－At the same time，in the new model，the p－value of all variable will be examined．If there is any variable with updated p－value larger than the threshold p－value for removal），it will be removed．
－install．package（olsrr）
－library（olsrr）
－ols＿step＿both＿p（mfit＿lbwi，pent $=0.2$, prem $=0.15$ ，progress $=$ TRUE， details＝FALSE）
－stsel＝ols＿step＿both＿p（mfit＿lbwi，pent $=0.2$ ，prem $=0.15$ ，progress $=$ TRUE，details＝FALSE）
－plot（stsel）
\cap Institute of Media，
Information，and Network

All possible models，best subset

－\＃\＃All possible models
－ols＿step＿all＿possible（mfit＿lbwi，pent $=0.2$ ，prem $=0.15$ ，progress $=$ TRUE，details $=$ FALSE $)$
－allpos＝ols＿step＿all＿possible（mfit＿lbwi，pent $=0.2$ ，prem $=0.15$ ，progress $=$ TRUE，details $=$ FALSE）
－plot（allpos）
－\＃\＃Best subset
－ols＿step＿best＿subset（mfit＿lbwi，pent $=0.2$ ，prem $=0.15$ ，progress $=$ TRUE，details $=$ FALSE）
－bestșubset＝ols step＿best＿subset（mfit＿lbwi，pent $=0.2$ ，prem $=0.15$ ，progress $=$ TRUE， details＝FALSE）
－plot（bestsubset）

Model selection－LASSO

－Bias－variance tradeoff
－Ridge regression
－LASSO（Least Absolute Shrinkage and Selection Operator）

Fir the $O L S$ ，we obtain $\hat{\beta}$ by mining is $\sum\left(Y_{i}-x_{i}^{z} \beta\right)^{2}$ prediction error（ $P E$ ）：If we have a new observation， The ertincatal \hat{Y}_{i} should be close to now Y_{i}

$$
\begin{aligned}
\operatorname{PE}\left(x_{0}\right)= & E_{Y \mid x=x_{0}}\left[(Y-\hat{f}(x))^{2} \mid x=x_{0}\right] \\
= & \left.E_{Y(x=x}\left[f\left(x_{0}\right)+\varepsilon-E\left(\hat{f}\left(x_{0}\right)\right)\right]+E\left[\hat{f}\left(x_{0}\right)\right]-\hat{f}\left(x_{0}\right)\right]^{2} \\
= & E_{Y\left(x=20_{0}\right.}\left[\varepsilon^{2}\right)+E\left[\hat{f}\left(x_{0}\right)-e_{0}\right) E\left[\hat{f}\left(x_{0}\right)\right]^{2} \\
& \quad+E\left[f\left(x_{0}\right)-E \hat{f}\left(x_{0}\right)\right]^{2} \\
= & \sigma_{\varepsilon}^{2}+\quad \operatorname{Bar} \operatorname{Var}\left(\hat{f}\left(x_{0}\right)\right)+\left[\text { bias }\left(\hat{f}\left(x_{0}\right)\right)\right]^{2}
\end{aligned}
$$

（1）Introduce a lithe bias may decrease the variance．

If \＃of predictor is large，we sonetioe may have difficulty obtaining $\left(x^{\top} x\right)^{-1}$ ．

One way is to introduce＂penalty

$$
\sum_{i=1}^{n}\left(y_{i}-\frac{(3 t)}{x^{7} \beta}\right)^{2}-\lambda \sum_{i}^{p} \beta_{j}^{2}
$$

The solution $\hat{\beta}_{p<s}=\left(x^{\top} x\right)^{-1}\left(x^{\top} Y\right)$

$$
\hat{\beta}_{p L s}=\left(x^{7} x+\lambda I_{r}\right)^{-1} x^{7} y
$$

This is call ridge regress in．
λ is called the tuning parameter
Is $\hat{\beta}_{p L S}$ biased？

LASSO：（Least absulnte strimbage and selection operator）
When p is large，od there are sone X_{j} has n ． effed on Y ，we would like to kiel ont those by

$$
\sum\left(x_{i}-x_{i}^{\top} \beta\right)^{2}+\lambda \sum_{j=1}^{n}\left|\beta_{j}\right|
$$

library（glmnet）
las＝glmnet（data＿lbwi［，2：6］，data＿lbwi［，1］，family＝ c（＂gaussian＂））

$$
\begin{aligned}
& y_{i}=\beta_{0}+x_{1} \beta_{1}+x_{2} \beta_{2}+\varepsilon_{i} \\
& y_{i}=\beta_{0}+x_{1} \beta_{1}+x_{2} \beta_{2}+x_{2} x_{1} x_{2} \beta_{3}+\varepsilon_{i}
\end{aligned}
$$

If β_{3} is significant，then there is an interaction effed．
between x_{1}, x_{2} ．

$$
\begin{aligned}
& \text { If } x_{1} E\{0,1\} \quad x_{2} \in\{0,1\} \\
& \begin{aligned}
\beta_{3} & =\frac{E\left[Y \mid x_{1}=1, x_{2}=1\right]-E\left[y \mid x_{1}=1, x_{2}=0\right]}{\beta_{2}+\beta_{3}} \\
& -\frac{E\left[y \mid x_{1}=0, x_{2}=1\right]-E\left[y \mid x_{1}=0, x_{2}=0\right]}{\beta_{2}} \\
= & \beta_{3}
\end{aligned}
\end{aligned}
$$ Non－linear Covariate Fiffect

$y_{i}=f\left(x_{i}\right)+\varepsilon_{i} \quad f(x)$ is a smovth function wish certain ovoler
－Local Kernel Methoc
 of deriative without a prespecified form．
（1）For a fixed target piont x_{0} ，we want to estimute $f\left(x_{0}\right)$
（2）ove apporimate $f(x)$ aronad x_{0} by $\tilde{f}(x)=\beta_{0}+\beta_{1}\left(x-x_{0}\right)+\cdots+\beta_{p}\left(x-x_{0}\right)^{p}$
$\beta_{j}=f^{(j)}{ }^{\prime}\left(x_{0}\right)$ Taglor examansion．
（4）We approsimute the libelihoorl

$$
\begin{gathered}
\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2} \\
\operatorname{ly}-L L H=\sum\left(y_{i}-\tilde{f}\left(x_{i}\right)\right]^{2} k_{h}\left(x_{i}-x_{0}\right) \\
=\sum\left[y_{i}-\beta_{0}-\beta_{1}\left(x_{i}-x_{0}\right)-\cdots-\beta_{p}\left(x-x_{p}\right)\right)^{2} k_{k}\left(x_{i}\right.
\end{gathered}
$$

$\hat{\beta}_{0}, \hat{\beta}_{1} \cdots \hat{\beta}_{p}$ are the miniger of lecal likelihoul $(L L H)$ Note：$\hat{\beta}_{j}=f^{(j)}\left(x_{0}\right), \hat{\beta}_{0}=f\left(x_{0}\right)$

Institute of Media，
Non－linear Covariate Effect
－Local Kernel Method
The $k_{h}\left(x_{i} \rightarrow x_{0}\right)=\frac{1}{h} k\left(\frac{x_{i}-l_{0}}{h}\right)$ which is the kernels weirdo． $k(x)$ can be a symantrin function．

$$
\text { ecg. } k(x)=
$$

h is the bang width contort the smoothness of the estimated fantom

П．． $\mathrm{I}_{\text {Institute of Media，}}^{\text {Information，and Network }}$
 Non－linear Covariate Effect

Epanechnikov $\quad K(u)=\frac{3}{4}\left(1-u^{2}\right)$

Gaussian

$$
\begin{aligned}
K(u) & =\frac{3}{4}\left(1-u^{2}\right) \\
K(u) & =\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} u^{2}}
\end{aligned}
$$

Bandwidth

－As $\mathrm{h}->0$ ，the bias introduced by the weight $->0$ ，the variance increases．
－As h increases，the bias increase， the variance decreases．


```
library(np)
ord=order(data_lbwi$length)
data_lbwi=data_lbwi[ord,]
model.np <-
npreg(data_lbwi$headcir~data_lbwi$length ,regtype =
"ll",bwmethod = "cv.aic",gradients = TRUE)
summary(model.np)
npsigtest(model.np)
model.par <- Im(data_Ibwi$headcir~data_lbwi$length)
plot(data_lbwi$length, data_lbwi$headcir, xlab = "length", ylab
= "head circumference", cex=.1)
lines(data_lbwi$length, fitted(model.np), lty=1, col = "blue")
lines(data_lbwi$length, fitted(model.par), Ity = 2, col = " red")
``` Smoothing Spline
\[
Y=f\left(x_{i}\right)+\varepsilon_{i} \quad i=1 \cdots n
\]
\[
\begin{aligned}
& Y=f\left(x_{i}\right)+\varepsilon_{i} \quad i=1 \cdots n \\
& L S E: \quad \sum\left(Y_{i}-f\left(x_{i}\right)\right)^{2} \quad \text { or } \quad[Y-f(x)]^{\top}[Y-f(x)] \\
& Y=\left(y, \cdots, y_{n}\right)^{\top} X=\left(x_{1}, x_{2}\right)
\end{aligned}
\]
\[
Y=\left(y_{1}, \cdots, y_{n}\right)^{\top} x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\top}
\]
minimjer of CSE is \(\hat{f}\left(x_{i}\right)=Y_{i}\)（meaningless）
\[
\text { PLH }=\Sigma\left(Y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \int\left[f^{\prime \prime}(x)\right]^{2} d x
\]
（penaljed the second－derivative）
of The minimizer will be a cabin splint wion all \(x_{\nu}\) as the boos．\(\hat{f}\left(x_{i}\right)=\sum_{j=1}^{k} \beta_{j} B_{j}\left(x_{i}\right)\) for sure \(\beta_{j}\)
\(B_{j}(x)\) is the rubin spline basis．
rewrite \(f\left(x_{i}\right)=\beta^{\top} B\left(x_{i}\right)\)
\[
\beta=\left(\beta_{1} \cdots \beta_{p}\right)^{\top} \quad B(\bar{x})=\left(B_{1}(x), \ldots \beta_{p}(x)\right)^{\top}
\] Smoothing Spline

If we accept the above conclusion
\[
\begin{aligned}
\int f^{(2)}(x)^{2} d x & =\int\left[\sum_{j} \beta_{j} B_{j}^{(2)}(x)\right]^{2} d x=\int \beta^{\top} B^{(3)}(x) B^{(2)}(x)^{\top} \beta d x \\
& =\beta^{\top} \int B^{(2)}(x) B^{2}(x)^{\top} d x \underline{\beta}=\beta^{\top} \underline{\underline{p}} \beta
\end{aligned}
\]

Therefore，the \(P L H=\left[\underline{Y}-B(x) \beta^{\beta}[\underline{Y}-B(x) \beta]+\pi \beta^{\top} \underline{P} \underline{\beta}\right.\)
\[
\begin{aligned}
& \text { where } \underline{\underline{B(x)}}=\left(B\left(x_{1}\right), \cdots, B\left(x_{n}\right)\right)^{\top} \\
& =\left(\begin{array}{ccc}
B_{1}\left(x_{1}\right) & \cdots & B_{p}\left(x_{1}\right) \\
B_{1}\left(x_{2}\right) & \cdots & B_{p}\left(x_{n}\right) \\
\vdots & B_{1}\left(x_{n}\right) & \cdots \\
B_{p}\left(x_{n}\right)
\end{array}\right) \\
& \begin{array}{l}
\frac{\partial P L H}{\partial \beta}=2 B(B T x)^{\top}(Y-B(x) \beta) \\
B_{1}\left(x_{n}\right) \\
=2 \lambda=0
\end{array} \\
& +2 B(x)^{\top} \underline{I}+2 \underline{B(x)^{\top}} \underline{B(x)} \beta+2 \lambda \underline{\underline{P}} \underline{\underline{1}} \\
& \underline{B(x)^{\top}} \underline{I}=\left(\underline{B(x)^{\top}} \underline{\underline{B}(x)}+\lambda \underline{P}\right) \frac{\beta}{\bar{B}} \\
& \hat{\beta}=\left(\underline{B}(x)^{\top}(B x)+\lambda \underline{P}\right) \underline{B}(x)^{\top} Y
\end{aligned}
\]

Cubic B－spline basis functions

\section*{Fit Spline using MGCV}
library（mgcv）
b＜－gam（birthrt～gnp，family＝gaussian（），data＝data＿gnp）
b＜－gam（birthrt～s（gnp），family＝gaussian（），bs＝cr， data＝data＿gnp）
plot（b）
```

