m " Institute of Media, ’@}\3 é_:./ﬂéﬁiﬂ‘ %&7&%%

Information, and Network Sy

%%t (2) BYREHR
Chapter 18

School of Life Sciences and Biotechnology

IR

HIR A GPRANERSENGIE
EREHIE BBAFEMGT R



S
’/

m Institute of Media, ;m A Bk FRANFRE
SITY

" School of Life Sciences and Biotechnology

Information, and Network

Outllne

* Regression concept

* Simple linear regression model
* Formulation of the model
* Estimation of regression coefficients
* Inference of regression coefficients

e Extension



.11 Information, and Network

m . Institute of Media, @ il R v = ST
Linear regression concept

School of Life Sciences and Biotechnology

* Correlation coefficient tells us the magnitude at which two random variables are linearly
assoclated with each other; it does not tell us how change in one variable impact the
value of the other one

* Linear regression seeks to identify the linear functional form (intercept and slope)
between the mean of one variable (response variable, dependent variable or
outcome variable) and any fixed value of the other variable (explanatory variable,
Iindependent variable, covariate, predictor or regressor)

* The ultimate objective Is

* Assess how change in the predictor impact value of the response.
* Estimate or predict the response that is associated with a fixed value of the predictor.
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Representation of a line

A line can be represented as
Yy =a+ fpX
e X and y correspond to the coordinates on X axis and Y axis, respectively
e o Is called the intercept; « is the value of y when x =0
e /3 is called the slope:
* When g > 0 or positive slope, y increases as x increases. For every unit increase in x,
the increase iny is f.
*When g < 0 or negative slope, y decreases as x increases. For every unit increase in X,
the decrease iny is -4.
*When g =0= aline parallel to X axis and y is a constant that does not change as x ranges
over all possible values

School of Life Sciences and Biotechnology
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Lines with different intercept and same slg,. .
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The model

Consider dependent variable Y and independent variable X.
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We assume that

e Given any fixed value x of X,Y follows a normal distribution

with mean s, and variance o, ,

® ity =+ X = themean of Y Is linearly associated the values of X

(a and g are called regression coefficients)

2

Yk = o’ isa constant = the variance of Y given any fixed value X is

®0

the same (homoscedasicity)
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The model cont.

Now, let (x.,y.), 1=1, 2,..., n, be a random sample. Based on the
assumption just proposed, we have

V. =a+ X +¢&,
where &, IS an error term that accounts for variability from what is
expected from a line. In accordance with previous assumptions, the
error terms is assumed to have a normal distribution with mean 0 and
variance o, = 0"

x —

We also have to assume y; are independent of y, for different i and j.
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Head circumference example

* Among children of both sexes, head circumference appears to increase
linearly with gestational age.

* Head circumference Is the outcome variable and gestational age Is the
Independent variable

* An understanding of their relationship helps parents and
pediatricians to monitor growth and detect possible cases of
macrocephaly and microcephaly

* A sample of 100 low birth weight infants born in Boston is available for
analysis

* Mean(head circumference)=a+[xgestational age
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Which line is better?
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Least Square Estimate
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To fita line to data (x,,y.), 1=1, 2, ...n, we would like that the points are as close to the line
as possible. Obviously, it is impossible to find a line that passes every point. Therefore,

we need to have some criteria on what is the best line in terms of

the distance between the data points and a fitted line. One criteria is

the least squares criteria and the associated method in finding the line is called

method of least squares.

Lety. = o+ fx be the value on the fitted line corresponding to x.,
then define the residual e, as

& =Y — Y
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Least Square Estimate

Intuitively, we want to fit a line that makes the residuals as small as possible.
The method of least squares seeks a line that minimizes the sum of the squares
of the residuals, or the error sum of squares (SSE).

Specifically, we try to find (&, /) such that
SSE =17 =D (¥, — %)’ = 2. (¥, & - %)’
=1 i=1 i=1

IS minimized.
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Methods of least squares cont.

The estimates of « and £ based on method of least squares are

- 2Ly
S TR

with

> Z_l Y,

iz g y =
n

X




Institute of Media, ¢ 6 \ 3/;%%;[. %}‘j’i 7[‘(%[3’}6
.11 Information, and Network S/

School of Life Sciences and Biotechnology

35— @]

¥ 9 =3.91+0.78x

27 5=

headcirc

25—

22 5=

20—

| | | | | |
225 25 275 30 325 35

gestage



m Institute of Media, ﬁ:i: éf/ﬂLﬁﬁl‘ %ﬁiﬁ% i

° Informatlon, a'nd NetWOI'k ® School of Life Sciences and Biotechnology

Inrerence 1or regression coef. iCiciivs

se(f3) =

1 &

o A
- and se(a) =a\/+ - —
\/Zizl(xi - X)? " 2L (6=%)

Usually, o, the standard deviation of the error term, is not known. Hence, we need to estimate

it by the standard deviation of the residuals :

S:\/Zi”_l(yi_yi)z \/Zin_l(yi—o?—ﬁxi)z
n—2

n-2 B

Therefore,

o2
and se (&) =s i, - X .
& Zi:l(xi —X)

se”(f) = >
I3 06— 02
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Inference of B

¢ The slopeis usually the more important coefficient in that it quantifies the average change
in y that correspond each one - unit change in x. In particular, £ = 0 implies that there is no
linear relationship between x and y; the mean value of y is the same regardless of the value
of x.

¢ Hypothesis testing :

ﬁﬂo

Under the null hypothesis, T =
se’ ()

has a t distribution with n-2 degrees of freedom. Hence,

reject the null hypothesiswhen |T [>t,_, ,/».

¢ (1-)%x100% Cl for g :

(B—th20155€ (B), B+, 2015 (B))
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Matrix Derivation of LSE
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Y=l )" X2 ( ”‘(:" X) Fetrpy |

Y=Xp+2 oy £e (5 8)”
L3E R = angim (Y-XP)'(Y-XT)

B P L3¢

) LSE(l

g X (T- X" =T -fx)p = o
- F: (XXT)_,)( Y

! X:, - X(')

| Li . (: X xxr) N /;:(XTX)-IXT
C‘N(f)zc
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Vet clov i varx i
fog=xT8 L% . p

togaxth — =b

‘R‘)“-X—’X > 21X

}cx)—.xvp,x S 3X

'f(x) F( box)) =— fiiwo) 22~ i
= bx)Thy —> 2 1) dfé‘() x
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Inference of a
¢ Hypothesis testing :

Ho:a=0ay versus H, : a #

Under the null hypothesis, T = ¢ :(Ofc)’ has a t distribution with n-2 degrees of freedom. Hence,
se (a

reject the null hypothesiswhen | T [>t,_, /5.

o (1- ) =x100% ClI for o :

(0’Z _ 1:n—2,05/28e (d)’ OA[ + tn—2,0d2$e (d) )
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Remarks

e Recall that « Is the mean value of y corresponding to x = 0. The x;'s are far away from 0
under many situationsand x is not even allowed to be 0 sometimes. Therefore, the interpretation
of such an coefficient is not very meaningful under such circumstances. In practice, we usually use a

centered version of x; in the regression analysis. That is, create

and fit a regression line y = a® + px for (x;, y;). Here, A3 has exactly the same interpretation as

before and & is the mean value of y associated with mean value X.
o Atest of H, : g =0isequivalent to the test of H, : p =0, where p is the population correlation

coefficient between xand y.
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Head circumference example cont.

s=159 s,=2534 B=0.78

H,: =0 vs.Ha: g#0

se’(B)=s/ \/Z(xi ~X)? =1.59/+/99 x 2.534% = 0.063
i=1

T _ 078 =12.36

~ 0.063
For a t,,(0.025)=1.98. Since T>1.98, we reject the null hypotheses

at 5% significance level and conclude that with each unit increase of
gestational age, there is a significant change (increase) of the mean
head circumference.

95% CI: (0.78-1.98(0.063),0.78 +1.98(0.063)) = (0.656,0.904)

What is we want to test HO: beta=1?
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> summary(fit_lbowi)

Call:
Im(formula = headcirc ~ gestage, data = data_lbwi)

Residuals:
Min  1Q Median 3Q Max
-3.5358 -0.8760 -0.1458 0.9041 6.9041

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.91426 1.82915 2.14 0.0348 *
gestage  0.78005 0.06307 12.37 <2e-16 »**

Signif. codes: 0 **+" 0.001 *+’ 0.01 ¥’ 0.05°.01"°"1

Residual standard error: 1.59 on 98 degrees of freedom
Multiple R-squared: 0.6095, Adjusted R-squared: 0.6055
F-statistic: 152.9 on 1 and 98 DF, p-value: < 2.2e-16

i% Y
311174

HEaBHASIAR 2BE
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] Diagnosis—(Goodness of fit




m Institute of Media, g@ é_:.ﬁﬁﬁl‘ %ﬁ*% Igjeﬁ

] Infomlatlon’ a'nd NetWOI'k i School of Life Sciences and Biotechnology

Model Diagnosis—Residual plots

Head Circumference

Residuals vs Fitted
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Model Diagnosis—Normality

Head Circumference
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Model Diagnosis—Homogeneity
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Simple linear regression is closely relates to the concept of ANOVA.

eFor each fixed value of x, the mean value of y Is ., = « + BX. Therefore,
the null hypothesis that S =0 is equivalent to saying that

these infinite number of populations have the same mean.

e The within group variation in the simple linear regression setting is
measured by mean squares of error

SSE _ 2 (yi—9)" o
n-2 n—2 |

MSE =




m Institute of Media, \@? % é_:.’li%$4‘ %ﬁ*%ﬁ%
° SITU)

o Infonnatlon’ a'nd Network '\ ”réu School of Life Sciences and Biotechnology

Connection to ANOVA

e The between group variation in the simple linear regression setting
IS measured by mean squares due to regression

MSR =

sum of squares due to regression =SSR &, 12
A == =209

e The statistic F = I\I\:—“ZE follows an F distribution with 1 and n-2 degrees

of freedom under the null hypothesis that the infinite number of populations
have the same mean. The F test is equivalent to the t test of 5 =0.
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Source Sum of Squares df  Mean F P-value
of (SS) Squares Statistic
variation (MS)

Regression SSR = i(j}f — ,]_/’)2 1 MSR= ¥
i-1

Residuals T~ IESRY)
(Errors) SSE _Z‘(yi yi) n-2

»

n \
Total SST = Z ( y, — y)z n-1 52
i=1

> F = calculated F )
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Multiple Linear Regression

hool of Life Sciences and Biotechnology

1";' =Iﬂq} f ﬁll’lf o ﬁ,l,;xliﬁ: - £
with the same distribution assumption for the noise term.
* Remember = (XXT)"1(XTY)

* Multicollinearity refers to a situation in which two or more explanatory
variables in a multiple regression model are highly linearly related.

e If the XXT is not of full rank(collinear), the B is not computable.

* Even if XXT is invertible, a high correlation among Xs will affect the
standard error estimators.

* Using variance inflation factor: Vle:1—R2 where Rjzis the coefficient of
j

determination of X] versus other Xs.


https://en.wikipedia.org/wiki/Multiple_regression
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* R? is obtained by regress Xj vs X1, X2, -+, Xp without Xj. The R? of
the regression model is R?

> summary(lm(gestage~+Iength+birthwtl+momage+toxemia ,data=data_lbwi)) ##calculate the R-square of
gestage
Coefficients:
Estimate Std. Error t value Pr(>[t|)
(Intercept) 15.798835 2.050346 7.705 1.25e-11 ***
length 0.193789 0.077733 2.493 0.014397 =
birthwt  0.003918 0.001012 3.872 0.000198 **x*
momage 0.042371 0.026949 1572 0.119222
toxemia  2.264834 0.389897 5.809 8.34e-08 »*=

Signif. codes: 0 ***" 0.001 *+' 0.01 *"0.05°.°0.1°"1

Residual standard error: 1.558 on 95 degrees of freedom
Multiple R-squared: 0.6372, Adjusted R-squared: 0.6219
F-statistic: 41.71 on 4 and 95 DF, p-value: < 2.2e-16
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Multiple Regréggriagrxn{ul%odel

Im(formula = headcirc ~ gestage + length + gestage + birthwt +

> vif(data_lbwi[,2:6]) #calcualte the VIF. momage + toxemia, data = data_lbwi)
Variables  VIF

1 length 3.348036 Residuals:

2 gestage 2.756302 Min  1Q Median 3Q Max

3 birthwt 3.523658 -2.0190 -0.6712 -0.0364 0.3334 8.0421

4  momage 1.087551

5 toxemia 1.407603 Coefficients:

Estimate Std. Error t value Pr(>[t|)

(Intercept) 7.2097216 2.1285705 3.387 0.00103 *=*

gestage  0.5261922 0.0835553 6.298 9.62e-09 **x

length 0.0082711 0.0653434 0.127 0.89954

birthwt  0.0042555 0.0008867 4.799 5.99e-06 ***

momage -0.0300651 0.0222312 -1.352 0.17950
If VIFO>0, there is a problem with toxemia  -0.5160581 0.3696445 -1.396 0.16597
variance estimation of the coefficients -

Signif. codes: 0 **+" 0.001 *+' 0.01 ¥ 0.05°.°01""1

Residual standard error: 1.269 on 94 degrees of freedom
Multinle R-sauared: 07615 Adiusted R-sauared: 0O 74



Residuals

+Y|Standardized residuals]

2 4 86 8

1]

-2

20

1.0

0.0

Institute of Media,
Information, and Network

Head Circumference
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Model selection- stepwise regression

* Build regression model from a set of candidate predictor variables
by entering and removing predictors based on p values, In a
stepwise manner until there 1s no variable left to enter or remove
any more.

* At each step, each variables will be added into the model at a
time. The variable with the smallest p-value (and lower than the
prespecified threshold p-value for inclusion) will be included.

* At the same time, In the new model, the p-value of all variable will
be examined. If there Is any variable with updated p-value larger
than the threshold p-value for removal), it will be removed.
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* Install.package(olsrr)
* library(olsrr)

* ols_step_both p(mfit_[bwi,pent = 0.2, prem = 0.15, progress = TRUE,
details = FALSE)

* stsel=0ls_step both_p(mfit_lbwi,pent = 0.2, prem = 0.15, progress =
TRUE, details = FALSE)

* plot(stsel)
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All possible models, best subset

* ##All possible models
* ols_step_all_possible(mfit_lbwi,pent = 0.2, prem = 0.15, progress = TRUE, details = FALSE)

. Iag/IAIJcI)_gE):ols._s.tep_aII_possible(mfit_lbwi,pent = 0.2, prem = 0.15, progress = TRUE, detalls =

* plot(allpos)

* ##Best subset
* ols_step_best_subset(mfit_lbwi,pent = 0.2, prem = 0.15, progress = TRUE, details = FALSE)

* bestsubset=o0ls _step_best_subset(mfit_lbwi,pent = 0.2, prem = 0.15, progress = TRUE,
details = FALSE)

* plot(bestsubset)
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* Bias-variance tradeoff
* Ridge regression
* LASSO(Least Absolute Shrinkage and Selection Operator)
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Model selection- LASSO
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Model selection- LASSO
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e
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ridge

library(glmnet)
las=glmnet(data_lbwi[,2:6],data_lbwi[,1], family =
c("gaussian))
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Interactions
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Non-linear Covariate Effect
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Non-linear Covariate Effect

* Local Kernel Method
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Non-linear Covariate Effect
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* As h->0, the bias introduced by the Welght >(), the variance

INncreases. .
* As h Increases, the bias Increase,
the variance decreases. . ]
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library(np)

ord=order(data_lbwi$length)
data_lbwi=data_lbwi[ord,]

model.np <-
npreg(data_lbwi$headcir~data_lbwi$length ,regtype =
"[I" bwmethod = "cv.aic”,gradients = TRUE)
summary(model.np)

npsigtest(model.np)

model.par <- Im(data_lbwi$headcir~data_lbwi$length)
plot(data_lbwi$length, data_lbwi$headcir, xlab = "length", ylab
= "head circumference”, cex=.1)

lines(data_lbwi$length, fitted(model.np), Ity=1, col = "blue")
lines(data_lbwi$length, fitted(model.par), Ity = 2, col = " red")
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Smoothing Spline
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Smoothing Spline
5 we acepr  fle abws  coclugion

S %oy * olx =j[‘§: {56- B;-“ e3) ] el ﬂf-‘ Bv(’*) lZ"fx/"'g A

= 7 [ 8% 80yT dx b = Pf
Zheverre , the PpLH= [‘f‘@’i‘fﬁﬁii’ )@ ] *”ETE ¢

Where %—_(__i) = ( Bexay, -, B (x"))T

B, OU .. 3p&t)
- ( B,'N‘v) -~ b (_(7'-17)
- ]IX)T v _Nx ‘ - h)
S PLH ’zzz (Y-3e9p) B, otn) - [hy (F
>P -—%ﬁ_ e + 2N fﬁ =. 0
2By raEp = 200700 B 427 P

pof ¢ = (BT )L
= T B= (nwTae cPL)BO9TY




//;

m Institute of Media, q’ (7;[’ éﬁﬁﬁiﬂ‘ %&7&% Ig)bﬁ

. .11 Information, and Network

School of Life Sciences and Biotechnology

Cubic B-spline basis functions
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Fit Spline using MGCV

library(mgcv) o |

b <- gam(birthrt~gnp,family=gaussian(),data=data_gnp)

b <- gam(birthrt~s(gnp),family=gaussian(),bs=cr, ~ .

data=data_gnp) -

plot(b) g 2
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