Ohm's law states that the voltage v across a resistor is directly proportional to the current i flowing through

$$v = iR$$

The resistance R of an element denotes its ability to resist the flow of electric current; it is measured in ohms.

$$R = \frac{o}{i}$$

A short circuit is a circuit element with resistance approaching zero.

An open circuit is a circuit element with resistance approaching infinity.

Figure 2.7 The *i-v* characteristic of: (a) a linear resistor, (b) a nonlinear resistor.

 Conductance is the ability of an element to conduct electric current; it is measured in mhos or siemens (S).

A branch represents a single element such as a voltage source or a resistor.

A node is the point of connection between two or more branches.

A loop is any closed path in a circuit.

Figure 2.10 Nodes, branches, and loops.

Figure 2.11 The three-node circuit of Fig. 2.10 is redrawn.

5

- Two or more elements are in series if they exclusively share a single node and consequently carry the same current.
- Two or more elements are in parallel if they are connected to the same two nodes and consequently have the same voltage across them.

Kirchhoff's Laws

 Kirchhoff's current law (KCL) states that the algebraic sum of currents entering a node (or a closed boundary) is zero.

$$\sum_{n=1}^{N} i_n = 0$$

Figure 2.16Currents at a node illustrating KCL.

Figure 2.17 Applying KCL to a closed boundary.

7

 Kirchhoff's voltage law (KVL) states that the algebraic sum of all voltages around a closed path (or loop) is zero.

$$\sum_{m=1}^{M} v_m = 0$$

Figure 2.19 A single-loop circuit illustrating KVL.

Figure 2.20

Voltage sources in series: (a) original circuit, (b) equivalent circuit.

Determine v_o and i in the circuit shown in Fig. 2.23(a).

Figure 2.23

Example 2.7

Practice Problem 2.7

Figure 2.26

Figure 2.27

Series Resistors and Voltage Division

Figure 2.29

A single-loop circuit with two resistors in series.

The equivalent resistance of any number of resistors connected in series is the sum of the individual resistances.

For *N* resistors in series then,

$$R_{\text{eq}} = R_1 + R_2 + \dots + R_N = \sum_{n=1}^{N} R_n$$
 (2.30)

To determine the voltage across each resistor in Fig. 2.29, we substitute Eq. (2.26) into Eq. (2.24) and obtain

$$v_1 = \frac{R_1}{R_1 + R_2} v, \qquad v_2 = \frac{R_2}{R_1 + R_2} v$$
 (2.31)

principle of voltage division

$$v_n = \frac{R_n}{R_1 + R_2 + \dots + R_N} v$$

Parallel Resistors and Current Division Consider

 The equivalent conductance of resistors connected in parallel is the sum of their individual conductances

$$G_{\text{eq}} = G_1 + G_2 + G_3 + \dots + G_N$$
 (2.40)

$$i_n = \frac{G_n}{G_1 + G_2 + \dots + G_N}i$$