PART 3
ADVANCED CIRCUIT ANALYSIS

CHAPTER 15
THE LAPLACE TRANSFORM




The important thing about a problem is not its
solution, but the strength we gain in finding the
solution.



The Laplace transform is significant for a
number of reasons.

First,it can be applied to a wider variety of
iputs than phasor analysis.

Second,1t provides an easy way to solve circuit
problems involving 1nitial conditions, because it
allows us to work with algebraic equations
instead of differential equations.

Third, the Laplace transform is capable of
providing us, 1n one single operation, the total
response of the circuit comprising both the
natural and forced responses.



15.2 Definition of the Laplace Transform

Given a function f(7), its Laplace transform, denoted by F(s) or L[ f(7)],
1s defined by

LI (D] = F(s) = Jf(z‘)e“ dt (15.1)

0

where s 1s a complex variable given by

s =0 +t jo (15.2)




Determine the Laplace transform of each of the following functions:
(a) u(f). (b) e “u(r).a = 0. and (c) 8(7).

Solution:

(a) For the unit step function #(7). shown in Fig. 15.2(a). the Laplace
transform 1s
= a] 1 o0
Llu(h)] = J le " dt = —;e‘”
0 0 (15.1.1)
1 1 1
= —0)+—(1) =—
ROBSOES
(b) For the exponential function. shown in Fig. 15.2(b). the Laplace
transform is

Lle " u()] = J e e dt
0" (15.1.2)
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(c) For the unit impulse function. shown in Fig. 15.2(c).

L8] = J She Tdt=e =1 (15.1.3)
o
since the impulse function &(7) 1s zero everywhere except at t = 0. The
sifting property in Eq. (7.33) has been applied in Eq. (15.1.3).

u(r) A e () a(r)
1
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(a) (b) (c)
Figure 15.2
For Example 15.1: (a) unit step function. (b) exponential function.
(c) unit impulse function.




Determine the Laplace transform of f(r) = smwiu(7).

Solution:
Using Eq. (B.27) in addition to Eq. (15.1). we obtain the Laplace
transform of the sine function as

w o ejcu!‘ . e—jwr
F(s) = L[sinwt] = J (sinwf)e " dt = J ( . )e_” dt
0 0 2]
1

= — J (E—(.S—j&l)f . E—{S-i—jcu).t‘) At
2] )

_L( 1 1 )_ ©
2i\s —jo s+ jo) 52+ o>

Find the Laplace transform of f(r) = 10 coswru(r).

Answer: 10s/(s” + »°).




TABLE 15.1

Properties of the Laplace transform.

TABLE 15.2

Laplace transform pairs.*

Property S F{(s) J) F(s)
Linearity a fi(f) + az fo(f) a,F(s) + a>F>(s) o(f) 1
1 5 1
Scali t —F| = u(t) -
wn o LA(2) S
Time shift fit — aut—ay e “F() oat 1
_ +
Frequency shift e “f(f) F(s + a) 5'1 a4
. df - t 2
Time — SF(s) — f(0 ) 5
e e dt
differentiation 5 n!
d’f ) o r' 1
7 $F(s) —sf(0) —f(0) s
af S3F(s) — S2£(07) = s£(0) e G +a
dr® =f"(0) e n!
_ _ Sy te
af S"F(s) — " LF0T)—s"2F(07) (s + a"!
di" - ... _f("—l)(o_} ] @
: sin wt 3 3
. : 1 5t w
Time infegration [ f(ode —F(s) s
0 § COswi =5 32
d 5T+ w
Flec.luency o () —EF(S) - s sind + w cosd
differentiation sin(wt + 6) > 2
U] - St w
Frequency e F(s)ds scosh — w sind
integration s cos(wf + ) 3 3
Fi(s) St w
Time periodicity f(f) = f(t + nT) — .7 ot @
1—e” e “sinwt ————
" . (s+a” +w
Initial value F(0) lim sF(s)
s— —at s+ta
. . e “coswt ——s 3
Final value f(=) 51_1% SF(s) (s+a”+w
Convolution Ji(6) = (0 F1(5)F>(s)

*Defined fort = 0, f(f) = 0, fort < 0.




THE INVERSE LAPLACE TRANSFORM

15.4.1 Simple Poles

Recall from Chapter 14 that a simple pole 1s a first-order pole. If F(s)
has only simple poles. then D(s) becomes a product of factors, so that

N(s)
F(s) = (15.48)
(s +p)(s +p2) (s + pn)
where s = —py. —p,..... —p, are the simple poles. and p; # p; for all

i # j (1.e., the poles are distinct). Assuming that the degree of N(s) 1s

less than the degree of D(s). we use partial fraction expansion to
decompose F(s) in Eq. (15.48) as

k k k
Fs) = —— + —=2 4 ... 4 7
s+ s+ p> s+ p,

(15.49)

k:' - (5 +p1‘)'F(S) |5=—p,-




15.4.2 Repeated Poles

Suppose F(s) has n repeated poles at s = —p. Then we may represent
F(s) as
F(s) = — 7 _ 4 k”_‘n_l 4o JFL2
s+p) (s+p (s + p) (15.54)
+ s ilp + .Fl(ﬂj

The mth term becomes

m

1 d S
-'Eln—m — ; (??.S'm[(j +p) F(S)] |5=—P

where F;(s) 1s the remaining part of F(s) that does not have a pole at
s = —p. We determine the expansion coefficient i, as

ko= (s + D)'F(5) [s—p (15.55)

as we did above. To determine &,,_ ;. we multiply each term i Eq. (15.54)
by (s + p)" and differentiate to get rid of k,,. then evaluate the result at
s = —p to get rid of the other coefficients except k,,_;. Thus. we obtain

d n
kn-1 = —[(s + PY'F)] |s——p (15.56)
Repeating this gives
1 d* i
kn— =75l + P)'F($] [s=—p (13.57)

21 ds?




B 1 n—1 ?—EJ'E‘
L 1[ n ﬂ)n} = EH _€ D u(?) (15.59)

to each term on the right-hand side of Eq. (15.54) and obtain

k
(1) = (kle‘ﬁ + kote P+ z—frze‘f’*‘
' (15.60)

k” n—1_— r)
+ -+ o — ])!r e 7' lu(h) + f1(D)




3.COMPLEX POLES

AIE +A2
s> +as+ b

F(s) = + Fy(s) (15.61)

where Fi(s) 1s the remaining part of F(s) that does not have this pair
of complex poles. If we complete the square by letting

stas+b=s4+2as+a>+ B =(G+a’+ B> (1562
and we also let
As + Ar = Ai(s + @) + B1f (15.63)
then Eq. (15.61) becomes

Al(S + EI'."J BIB
- + _
s+al+B> (G+a’+p

F(s) = + Fy(s)  (15.64)

From Table 15.2. the mverse transform is

f() = (4, “"cosPBt + Bie “sinBHu(t) + f1(5) (15.65)




Use the Laplace transform to solve the differential equation

d>v(  _dv(f)
;g + 67 =+ 8u() = 2u(t)

subject to v(0) = 1.v'(0) = —2.

Solution:
We take the Laplace transform of each term in the given differential

equation and obtain

[s27(s) — sv(0) — v'(0)] + 6[sV(s) — v(0)] + 8W(s) = % .




Solve for the response y(7) in the following integrodifferential equation.

v !
ﬂ,% + 51 + 6 J v(rydr = u(. »(0)=2
0

Solution:
Taking the Laplace transform of each term. we get

[ST(5) = ¥(O)] + SKG) + 75) =




APPLICATIONS OF THE LAPLACE
TRANSFORM

Steps in Applying the Laplace Transform:

1. Transform the circuit from the time domain to the s-domain.

2. Solve the circuit using nodal analysis, mesh analysis, source
transformation, superposition, or any circuit analysis technique
with which we are familiar.

3. Take the inverse transform of the solution and thus obtain the
solution 1n the time domain.




For a resistor, the voltage-current relationship 1n the time domain 1s

v(f) = Ri(/)

laking the Laplace transform, we get

V(s) = RI(s)

(16.1)

(16.2)




For an inductor,
di(r)

v(t) = L7

Taking the Laplace transform of both sides gives
V(s) = L[sI(s) — i(0 )] = sLI(s) — Li(0 )

or
1
—*(S) 1 i(07)
I(s) = —W(s) +
+ sl
sL
V(s)

Li(07)

(b)

NOE=




For a capacitor,

l()_ . df

which transforms into the s-domain as
I(s) = C[sV(s) — v(0 )] = sCV(s) — Cv(0 )

or

v(0 )

A)

1
V(s) = EI(S) +
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Figure 16.2

Representation of a capacitor: (a) time-domain, (b,c) s-domain equivalents.
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Figure 16.4
For Example 16.1.
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Figure 16.5
Mesh analysis of the frequency-domain
equivalent of the same circuit.
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Find v,(?) in the circuit of Fig. 16.7. Assume v,(0) = 5 V.

10eu(f) V @)

10 Q
MWW
+
IOQ§ — 0.1F

V(1) =

() 28004




Find v,(7) in the circuit of Fig. 16.7. Assume v,(0) = 5 V.

10 Q
_|_
10e™"u(f) V 10 Q v,() =— 0.1 F 28(f) A
10 V. (s)
i y
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Example 16.4
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v (1) (D E SH —F/0.1F

Figure 16.12
For Example 16.4.

Vl — 10/S Vl — 0 @ Vl - [U(O)/S] -
10/3 " 5s " S " 1/(0.1s) =0 .




The transfer function H(s) is the ratio of the output response ¥(s) to
the input excitation X(s), assuming all initial conditions are zero.

Thus,

¥(s)
H(s) = X (16.15)

The transfer function depends on what we define as input and output.
Since the mput and output can be either current or voltage at any place
in the circuit, there are four possible transfer functions:

H Vol in = ~2) 16.16
§) = Volte g = .
(s) oltage gain v s) ( a)
- L(s)
H(s) = Current gain = (16.16b)
Ii(s)
V(s)
H(s) = Impedance = —— (16.16¢)
1(s)
_ I(s)
H(s) = Admittance = —— (16.164d)

V(s)




Determine the transfer function H(s) = V,(s)/I,(s) of the circuit

Example 16.8

Lo 10 h 2
YW |




STATE VARIABLE METHOD

Steps to Apply the State Variable Method to
Circuit Analysis:

1. Select the inductor current i and capacitor voltage v as the state
variables, making sure they are consistent with the passive sign

convention.
2. Apply KCL and KVL to the circuit and obtain circuit variables

(voltages and currents) in terms of the state variables. This
should lead to a set of first-order differential equations neces-
sary and sufficient to determine all state variables.

3. Obtain the output equation and put the final result in state-space
representation.




Find the state-space representation of the circuit in Fig. 16.22. Deter-

mine the transfer function of the circuit when v, is the mput and i, 1s
the output. Take R = 1), C = 0.25F, and L = 0.5 H.

I L 1 [
— —
rALL) _
v J Ix
_|_
Vs R C —/— v

Figure 16.22
For Example 16.10.




—— L
vr jx
* +
Vg R C =— v
Figure 16.22
For Example 16.10.
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Solution:
We select the inductor current 7 and capacitor voltage v as the state
variables.

vy = Lﬁ (16.10.1)
dt
ic = d_v (16.10.2)
dt
Applying KCL at node 1 gives
i=i +i, — Cd—v=i—3
dt R

or

b= —— + — (16.10.3) .
RC  C




since the same voltage v 1s across both R and C. Applying KVL around
the outer loop yields

di
v, =v; + U —)LEZ—U-FUS
: v U
i = —— + — (16.10.4)
L L

Equations (16.10.3) and (16.10.4) constitute the state equations. If we
regard i, as the output,

(16.10.5)




Putting Eqs. (16.10.3), (16.10.4), and (16.10.5) in the standard form

leads to
4 ol 1 .
[Lj} _ [If c [U} N M . (16.10.62)
I T 01 T
' —[i {JHU} 16.10.6b
=R ; (16.10.6b)

. we obtain from Eq. (16.10.6) matrices

(=]

IfR=1.C=4 and L =
1
RC C

e R R LR R

1
C:[E 0}2[1 0]

e R PRI PN

Taking the inverse of this gives

A =

s 4
~adjomtofA  [-2 s+4
~ determinant of A s + 45 + 8

(sT — A)~!




Thus, the transfer function i1s given by

s 4 0 8
ol ) e ol

s>+ 45 + 8 - s>+ 45 + 8
B 8
s>+ 4s + 8

H(s) = C(sI — A) !B =

which is the same thing we would get by directly Laplace transforming
the circuit and obtaining H(s) = I(s)/V(s). The real advantage of the
state variable approach comes with multiple inputs and multiple outputs.
In this case. we have one input v, and one output i.. In the next
example., we will have two inputs and two outputs.




Obtain the state variable model for the circuit shown in Fig. 16.23. Let
Ry =1.R, =2.C =0.5,and L = 0.2 and obtain the transfer function.

Practice Problem 16.10

R, L
——AMA———— _lz
— -

Figure 16.23
For Practice Prob. 16.10.




Consider the circuit in Fig. 16.24, which may be regarded as a two-
mput, two-output system. Determine the state variable model and find
the transfer function of the system.

1 T
& (D QEH v==3F @) ?;

Figure 16.24
For Example 16.11.







